
Monolith to Microservices 
Evolutionary Patterns to Transform 

Your Monolith 

Sam Newman 

Beijing • Boston • Farnham • Sebastopol • Tokyo O'REILLY 



Table of Contents 

Preface ix 

1. Just Enough Microservices 1 
What Are Microservices? 1 

Independent Deployability 2 
Modeled Around a Business Domain 2 
Own Their Own Data 5 
What Advantages Can Microservices Bring? 6 
What Problems Do They Create? 6 
User Interfaces 7 
Technology 8 
Size 8 
And Ownership 10 

The Monolith 12 
The Single Process Monolith 12 
The Distributed Monolith 14 
Third-Party Black-Box Systems 14 
Challenges of Monoliths 15 
Advantages of Monoliths 15 

On Coupling and Cohesion 16 
Cohesion 17 
Coupling 17 

Just Enough Domain-Driven Design 28 
Aggregate 29 
Bounded Context 31 
Mapping Aggregates and Bounded Contexts to Microservices 31 
Further Reading 32 

Summary 32 

iii 



2. Planning a Migration 33 
Understanding the Goal 33 

Three Key Questions 35 
Why Might You Choose Microservices? 35 

Improve Team Autonomy 35 
Reduce Time to Market 37 
Scale Cost-Effectively for Load 37 
Improve Robustness 38 
Scale the Number of Developers 40 
Embrace New Technology 41 

When Might Microservices Be a Bad Idea? 42 
Unclear Domain 43 
Startups 43 
Customer-Installed and Managed Software 44 
Not Having a Good Reason! 45 

Trade-Offs 45 
Taking People on the Journey 47 
Changing Organizations 47 

Establishing a Sense of Urgency 48 
Creating the Guiding Coalition 48 
Developing a Vision and Strategy 49 
Communicating the Change Vision 50 
Empowering Employees for Broad-Based Action 51 
Generating Short-Term Wins 51 
Consolidating Gains and Producing More Change 52 
Anchoring New Approaches in the Culture 52 

Importance of Incremental Migration 53 
It's Production That Counts 53 

Cost of Change 54 
Reversible and Irreversible Decisions 54 
Easier Places to Experiment 56 

So Where Do We Start? 56 
Domain-Driven Design 56 

How Far Do You Have to Go? 57 
Event Storming 58 
Using a Domain Model for Prioritization 58 

A Combined Model 60 
Reorganizing Teams 62 

Shifting Structures 62 
It's Not One Size Fits All 63 
Making a Change 65 
Changing Skills 68 

iv | Table of Contents 



How Will You Know if the Transition Is Working? 71 
Having Regular Checkpoints 71 
Quantitative Measures 72 
Qualitative Measures 72 
Avoiding the Sunk Cost Fallacy 73 
Being Open to New Approaches 73 

Summary 74 

3. Splitting the Monolith 75 
To Change the Monolith, or Not? 76 

Cut, Copy, or Reimplement? 76 
Refactoring the Monolith 77 

Migration Patterns 78 
Pattern: Strangler Fig Application 79 

How It Works 79 
Where to Use It 81 
Example: HTTP Reverse Proxy 83 
Data? 86 
Proxy Options 86 
Changing Protocols 90 
Example: FTP 93 
Example: Message Interception 94 
Other Protocols 97 
Other Examples of the Strangler Fig Pattern 97 

Changing Behavior While Migrating Functionality 97 
Pattern: UI Composition 98 

Example: Page Composition 99 
Example: Widget Composition 99 
Example: Micro Frontends 103 
Where to Use It 104 

Pattern: Branch by Abstraction 104 
How It Works 105 
As a Fallback Mechanism 111 
Where to Use It 112 

Pattern: Parallel Run 113 
Example: Comparing Credit Derivative Pricing 113 
Example: Homegate Listings 115 
Verification Techniques 116 
Using Spies 116 
GitHub Scientist 117 
Dark Launching and Canary Releasing 118 
Where to Use It 118 

Table of Contents | v 



Pattern: Decorating Collaborator 118 
Example: Loyalty Program 119 
Where to Use It 120 

Pattern: Change Data Capture 120 
Example: Issuing Loyalty Cards 120 
Implementing Change Data Capture 121 
Where to Use It 124 

Summary 124 

4. Decomposing the Database 125 
Pattern: The Shared Database 125 

Coping Patterns 127 
Where to Use It 127 

But It Cant Be Done! 127 
Pattern: Database View 128 

The Database as a Public Contract 129 
Views to Present 130 
Limitations 131 
Ownership 131 
Where to Use It 132 

Pattern: Database Wrapping Service 132 
Where to Use It 134 

Pattern: Database- as- a- Service Interface 135 
Implementing a Mapping Engine 136 
Compared to Views 137 
Where to Use It 137 

Transferring Ownership 137 
Pattern: Aggregate Exposing Monolith 138 
Pattern: Change Data Ownership 141 

Data Synchronization 143 
Pattern: Synchronize Data in Application 145 

Step 1: Bulk Synchronize Data 145 
Step 2: Synchronize on Write, Read from Old Schema 146 
Step 3: Synchronize on Write, Read from New Schema 147 
Where to Use This Pattern 148 
Where to Use It 148 

Pattern: Tracer Write 149 
Data Synchronization 152 
Example: Orders at Square 154 
Where to Use It 158 

Splitting Apart the Database 158 
Physical Versus Logical Database Separation 158 

vi | Table of Contents 



Splitting the Database First, or the Code? 160 
Split the Database First 161 
Split the Code First 165 
Split Database and Code Together 170 
So, Which Should I Split First? 170 

Schema Separation Examples 171 
Pattern: Split Table 171 

Where to Use It 173 
Pattern: Move Foreign-Key Relationship to Code 173 

Moving the Join 175 
Data Consistency 176 
Where to Use It 178 
Example: Shared Static Data 178 

Transactions 187 
ACID Transactions 187 
Still ACID, but Lacking Atomicity? 188 
Two-Phase Commits 190 
Distributed Transactions—Just Say No 193 

Sagas 193 
Saga Failure Modes 195 
Implementing Sagas 199 
Sagas Versus Distributed Transactions 205 

Summary 206 

5. Growing Pains 207 
More Services, More Pain 207 
Ownership at Scale 209 

How Can This Problem Show Itself? 209 
When Might This Problem Occur? 210 
Potential Solutions 210 

Breaking Changes 210 
How Can This Problem Show Itself? 211 
When Might This Problem Occur? 211 
Potential Solutions 212 

Reporting 215 
When Might This Problem Occur? 216 
Potential Solutions 216 

Monitoring and Troubleshooting 217 
When Might These Problems Occur? 218 
How Can These Problems Occur? 218 
Potential Solutions 218 

Local Developer Experience 222 

Table of Contents | vii 



How Can This Problem Show Itself? 223 
When Might This Occur? 223 
Potential Solutions 223 

Running Too Many Things 224 
How Might This Problem Show Itself? 224 
When Might This Problem Occur? 224 
Potential Solutions 224 

End-to-End Testing 226 
How Can This Problem Show Itself? 226 
When Might This Problem Occur? 226 
Potential Solutions 227 

Global Versus Local Optimization 229 
How Can This Problem Show Itself? 229 
When Might This Problem Occur? 229 
Potential Solutions 230 

Robustness and Resiliency 232 
How Can This Problem Show Itself? 232 
When Might This Problem Occur? 232 
Potential Solutions 232 

Orphaned Services 233 
How Can This Problem Show Itself? 233 
When Might This Problem Occur? 234 
Potential Solutions 234 

Summary 236 

6. Closing Words 237 

A. Bibliography 239 

B. Pattern Index 243 

Index 245 

viii | Table of Contents 


