Doing Bayesian Data Analysis

A Tutorial with R, JAGS, and Stan

JOHN K. KRUSCHKE

Dept. of Psychological and Brain Sciences Indiana University, Bloomington

AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier

CONTENT:

1.	Wha	t's in ThisBook (Read This First!)	1
	1.1	Real people can read this book	1
	1.2	What's in this book	3
	1.3	What's new in the second edition?	6
	1.4	Gimme feedback (be polite)	8
	1.5	Thank you!	8
PAI	RTI	The Basics:Models, Probability, Bayes'Rule,and R	13
2.	Intro	oduction: Credibility, Models, and Parameters	15
	2.1	Bayesian inference is reallocation of credibility across possibilities	16
	2.2	Possibilities are parameter values in descriptive models	22
	2.3	The steps of bayesian data analysis	25
	2.4	Exercises	31
3.	The	R Programming Language	33
	3.1	Get the software :	35
	3.2	A simple example of R in action	36
	3.3	Basic commands and operators in R	38
	3.4	Variable types	42
	3.5	Loading and saving data	53
	3.6	Some utility functions	56
	3.7	Programming in R	61
	3.8	Graphical plots: opening and saving	69
	3.9	Conclusion	69
	3.10	Exercises	70
4.	What Is This Stuff Called Probability?		71
	4.1	The set of all possible events	72
	4.2	Probability: outside or inside the head	73
	4.3	Probability distributions	78
	4.4	Two-way distributions	89
	4.5	Appendix: R code for figure 4.1	93
	4.6	Exercises	95

5.	Bayes'Rule		99
	5.1	Bayes'rule	100
	5.2	Applied to parameters and data	105
	5.3	Complete examples: estimating bias in a coin	108
	5.4	Why Bayesian inference can be difficult	115
	5.5	Appendix: R code for figures 5.1,5.2, etc	116
	5.6	Exercises	118
PAF	RT II	All the Fundamentals Applied to Inferring	
		a Binomial Probability	121
6.	Infe	rring a Binomial Probability via Exact Mathematical Analysis	123
	6.1	The likelihood function: Bernoulli distribution	124
	6.2	A description of credibilities: the beta distribution	126
	6.3	The posterior beta	132
	6.4	Examples	134
	6.5	Summary	138
	6.6	Appendix: R code for figure 6.4	138
	6.7	Exercises	139
7.	Mar	kov Chain Monte Carlo	143
	7.1	Approximating a distribution with a large sample	145
	7.2	A simple case of the Metropolis algorithm	146
	7.3	The Metropolis algorithm more generally	156
	7.4	Toward Gibbs sampling: estimating two coin biases	162
	7.5	MCMC representativeness, accuracy, and efficiency	178
	7.6	Summary	188
	7.7	Exercises	189
8.	JAG	s	193
	8.1	JAGS and its relation to R	193
	8.2	A complete example	195
	8.3	Simplified scripts for frequently used analyses	206
	8.4	Example: difference of biases	208
	8.5	Sampling from the prior distribution in JAGS	211
	8.6	Probability distributions available in JAGS	213
	8.7	Faster sampling with parallel processing in RunJAGS	215
	8.8	Tips for expanding JAGS models	218
	8.9	Exercises	218

9.	Hierarchical Models		221
	9.1	A single coin from a single mint	223
	9.2	Multiple coins from a single mint	230
	9.3	Shrinkage in hierarchical models	245
	9.4	Speeding up JAGS	249
	9.5	Extending the hierarchy: subjects within categories	251
	9.6	Exercises	260
10.	Model Comparison and Hierarchical Modeling		265
	10.1	General formula and the Bayes factor	266
	10.2	Example: two factories of coins	268
	10.3	Solution by MCMC	274
	10.4	Prediction: model averaging	289
	10.5	Model complexity naturally accounted for	289
	10.6	Extreme sensitivity to prior distribution	292
	10.7	Exercises	295
11.	Null	Hypothesis Significance Testing	297
	11.1	Paved with good intentions	300
	11.2	Prior knowledge	315
	11.3	Confidence interval and highest density interval	317
	11.4	Multiple comparisons	325
	11.5	What a sampling distribution is good for	329
	11.6	Exercises	331
12.	Baye	esian Approaches to Testing a Point ("Null") Hypothesis	335
	12.1	The estimation approach	336
	12.2	The model-comparison approach	343
	12.3	Relations of parameter estimation and model comparison	352
	12.4	Estimation or model comparison?	354
	12.5	Exercises	355
13.	Goals, Power, and Sample Size		359
	13.1	The will to power	360
	13.2	Computing power and sample size	366
	13.3	Sequential testing and the goal of precision	383
	13.4	Discussion	393
	13.5	Exercises	396

14.	Stan		399
	14.1	HMC sampling	400
	14.2	Installing Stan	407
	14.3	A complete example	407
	14.4	Specify models top-down in Stan	414
	14.5	Limitations and extras	415
	14.6	Exercises	415
PAF	RT III	The Generalized Linear Model	417
15.	Over	view of the Generalized Linear Model	419
	15.1	Types of variables	420
	15.2	Linear combination of predictors	423
	15.3	Linking from combined predictors to noisy predicted data	435
	15.4	Formal expression of the GLM	444
	15.5	Exercises	446
16.	Metric-Predicted Variable on One or Two Groups		449
	16.1	Estimating the mean and standard deviation of a normal distribution	450
	16.2	Outliers and robust estimation: the t distribution	458
	16.3	Two groups	468
	16.4	Other noise distributions and transforming data	472
	16.5	Exercises	473
17.	Metric Predicted Variable with One Metric Predictor		477
	17.1	Simple linear regression	478
	17.2	Robust linear regression	479
	17.3	Hierarchical regression on individuals within groups	490
	17.4	Quadratic trend and weighted data	495
	17.5	Procedure and perils for expanding a model	501
	17.6	Exercises	504
18.	Metric Predicted Variable with Multiple Metric Predictors		509
	18.1	Multiple linear regression	510
	18.2	Multiplicative interaction of metric predictors	525
	18.3	Shrinkage of regression coefficients	530
	18.4	Variable selection	536
	18.5	Exercises	549

19.	Metric Predicted Variable with One Nominal Predictor		553
	19.1	Describing multiple groups of metric data	554
	19.2	Traditional analysis of variance	556
	19.3	Hierarchical Bayesian approach	557
	19.4	Including a metric predictor	568
	19.5	Heterogeneous variances and robustness against outliers	573
	19.6	Exercises	579
20.	Metric Predicted Variable with Multiple Nominal Predictors		583
	20.1	Describing groups of metric data with multiple nominal predictors	584
	20.2	Hierarchical Bayesian approach	588
	20.3	Rescaling can change interactions, homogeneity, and normality	599
	20.4	Heterogeneous variances and robustness against outliers	602
	20.5	Within-subject designs	606
	20.6	Model comparison approach	616
	20.7	Exercises	618
21.	Dich	otomous Predicted Variable	621
	21.1	Multiple metric predictors	622
	21.2	Interpreting the regression coefficients	629
	21.3	Robust logistic regression	635
	21.4	Nominal predictors	636
	21.5	Exercises	646
22.	Nominal Predicted Variable		649
	22.1	Softmax regression	650
	22.2	Conditional logistic regression	655
	22.3	Implementation in JAGS	659
	22.4	Generalizations and variations of the models	667
	22.5	Exercises	668
23.	Ordinal Predicted Variable		671
	23.1	Modeling ordinal data with an underlying metric variable	672
	23.2	The case of a single group	675
	23.3	The case of two groups	682
	23.4	The case of metric predictors	685
	23.5	Posterior prediction	698
	23.6	Generalizations and extensions	699
	23.7	Exercises	700

Contents

xi

24.	Count Predicted Variable		703
	24.1	Poisson exponential model	704
	24.2	Example: hair eye go again	711
	24.3	Example: interaction contrasts, shrinkage, and omnibus test	713
	24.4	Log-linear models for contingency tables	715
	24.5	Exercises	715
25.	Tools in the Trunk		721
	25.1	Reporting a Bayesian analysis	721
	25.2	Functions for computing highest density intervals	725
	25.3	Reparameterization	729
	25.4	Censored data in JAGS	732
	25.5	What next?	736
Diblia	aranhu		707
Bibliography		737	
Index		747	