Advances in Financial Machine Learning

MARCOS LOPEZ DE PRADO

Contents

About the Author

PF	REAN	1BLE		1		
1	Financial Machine Learning as a Distinct Subject					
	1.1		ation, 3	4		
	1.2	1.2.1	ain Reason Financial Machine Learning Projects Usually Fail, The Sisyphus Paradigm, 4	4		
1.2.2 The Meta-Strategy Paradigm, 51.3 Book Structure, 6						
		1.3.1	Structure by Production Chain, 6			
		1.3.2	Structure by Strategy Component, 9			
		1.3.3	Structure by Common Pitfall, 12			
	1.4	Target	Audience, 12			
	1.5 Requisites, 13					
	1.6	FAQs,	14			
1.7 Acknowledgments, 18						
	Exe	rcises, 19				
	Refe	References, 20				
	Bibl	iograph	y, 20			
PA	ART 1	DAT	A ANALYSIS	21		
2	Financial Data Structures			23		
	2.1	Motiv	ation, 23			

ix

xxi

- 2.2 Essential Types of Financial Data, 23
 - 2.2.1 Fundamental Data, 23
 - 2.2.2 Market Data, 24
 - 2.2.3 Analytics, 25
 - 2.2.4 Alternative Data, 25
- 2.3 Bars, 25
 - 2.3.1 Standard Bars, 26
 - 2.3.2 Information-Driven Bars, 29
- 2.4 Dealing with Multi-Product Series, 32
 - 2.4.1 The ETF Trick, 33
 - 2.4.2 PCA Weights, 35
 - 2.4.3 Single Future Roll, 36
- 2.5 Sampling Features, 38
 - 2.5.1 Sampling for Reduction, 38
 - 2.5.2 Event-Based Sampling, 38

Exercises, 40

References, 41

Labeling

- 3.1 Motivation, 43
- 3.2 The Fixed-Time Horizon Method, 43
- 3.3 Computing Dynamic Thresholds, 44
- 3.4 The Triple-Barrier Method, 45
- 3.5 Learning Side and Size, 48
- 3.6 Meta-Labeling, 50
- 3.7 How to Use Meta-Labeling, 51
- 3.8 The Quantamental Way, 53
- 3.9 Dropping Unnecessary Labels, 54

Exercises, 55

Bibliography, 56

Sample Weights

- 4.1 Motivation, 59
- 4.2 Overlapping Outcomes, 59
- 4.3 Number of Concurrent Labels, 60
- 4.4 Average Uniqueness of a Label, 61
- 4.5 Bagging Classifiers and Uniqueness, 62
 - 4.5.1 Sequential Bootstrap, 63
 - 4.5.2 Implementation of Sequential Bootstrap, 64

4.5.3 A Numerical Example, 65

4.5.4 Monte Carlo Experiments, 66

- 4.6 Return Attribution, 68
- 4.7 Time Decay, 70
- 4.8 Class Weights, 71

Exercises, 72

References, 73

Bibliography, 73

5 Fractionally Differentiated Features

- 5.1 Motivation, 75
- 5.2 The Stationarity vs. Memory Dilemma, 75
- 5.3 Literature Review, 76
- 5.4 The Method, 77
 - 5.4.1 Long Memory, 77
 - 5.4.2 Iterative Estimation, 78
 - 5.4.3 Convergence, 80

5.5 Implementation, 80

- 5.5.1 Expanding Window, 80
- 5.5.2 Fixed-Width Window Fracdiff, 82
- 5.6 Stationarity with Maximum Memory Preservation, 84
- 5.7 Conclusion, 88

Exercises, 88

References, 89

Bibliography, 89

PART 2 MODELLING

6 Ensemble Methods

- 6.1 Motivation, 93
- 6.2 The Three Sources of Errors, 93
- 6.3 Bootstrap Aggregation, 94
 - 6.3.1 Variance Reduction, 94
 - 6.3.2 Improved Accuracy, 96
 - 6.3.3 Observation Redundancy, 97
- 6.4 Random Forest, 98
- 6.5 Boosting, 99

75

91

6.6 Bagging vs. Boosting in Finance, 1006.7 Bagging for Scalability, 101Exercises, 101References, 102Bibliography, 102

7 Cross-Validation in Finance

- 7.1 Motivation, 103
- 7.2 The Goal of Cross-Validation, 103
- 7.3 Why K-Fold CV Fails in Finance, 104
- 7.4 A Solution: Purged K-Fold CV, 105
 - 7.4.1 Purging the Training Set, 105
 - 7.4.2 Embargo, 107
 - 7.4.3 The Purged K-Fold Class, 108

7.5 Bugs in Sklearn's Cross-Validation, 109

Exercises, 110

Bibliography, 111

8 Feature Importance

- 8.1 Motivation, 113
- 8.2 The Importance of Feature Importance, 113
- 8.3 Feature Importance with Substitution Effects, 114
 - 8.3.1 Mean Decrease Impurity, 114
 - 8.3.2 Mean Decrease Accuracy, 116
- 8.4 Feature Importance without Substitution Effects, 117
 - 8.4.1 Single Feature Importance, 117
 - 8.4.2 Orthogonal Features, 118
- 8.5 Parallelized vs. Stacked Feature Importance, 121
- 8.6 Experiments with Synthetic Data, 122

Exercises, 127

References, 127

9 Hyper-Parameter T\ining with Cross-Validation

- 9.1 Motivation, 129
- 9.2 Grid Search Cross-Validation, 129
- 9.3 Randomized Search Cross-Validation, 1319.3.1 Log-Uniform Distribution, 132
- 9.4 Scoring and Hyper-parameter Tuning, 134

Exercises, 135 References, 136 Bibliography, 137

PA	RT 3	BACKTESTING	139			
10	Bet Sizing					
	10.1	Motivation, 141				
	10.2	Strategy-Independent Bet Sizing Approaches, 141				
	10.3	Bet Sizing from Predicted Probabilities, 142				
	10.4	Averaging Active Bets, 144				
	10.5	Size Discretization, 144				
	10.6	Dynamic Bet Sizes and Limit Prices, 145				
	Exercises, 148					
	References, 149					
	Bibli	iography, 149				
11	The Dangers of Backtesting					
	11.1	Motivation, 151				
	11.2	Mission Impossible: The Flawless Backtest, 151				
	11.3	Even If Your Backtest Is Flawless, It Is Probably Wrong, 152				
	11.4	Backtesting Is Not a Research Tool, 153				
	11.5	A Few General Recommendations, 153				
	11.6 Strategy Selection, 155					
	Exercises, 158					
	References, 158					
	Bibli	iography, 159				
12	Back	ktesting through Cross-Validation	161			
	12.1	Motivation, 161				
	12.2	The Walk-Forward Method, 161				
		12.2.1 Pitfalls of the Walk-Forward Method, 162				
	12.3	The Cross-Validation Method, 162				
	12.4	The Combinatorial Purged Cross-Validation Method, 163				
		12.4.1 Combinatorial Splits, 164				
		12.4.2 The Combinatorial Purged Cross-Validation				
		Backtesting Algorithm, 165				
		12.4.3 A Few Examples, 165				

 12.5 How Combinatorial Purged Cross-Validation Addresses Backtest Overfitting, 166
Exercises, 167

References, 168

13 Backtesting on Synthetic Data

- 13.1 Motivation, 169
- 13.2 Trading Rules, 169
- 13.3 The Problem, 170
- 13.4 Our Framework, 172
- 13.5 Numerical Determination of Optimal Trading Rules, 17313.5.1 The Algorithm, 173
 - 13.5.2 Implementation, 174
- 13.6 Experimental Results, 176
 - 13.6.1 Cases with Zero Long-Run Equilibrium, 177
 - 13.6.2 Cases with Positive Long-Run Equilibrium, 180
 - 13.6.3 Cases with Negative Long-Run Equilibrium, 182
- 13.7 Conclusion, 192

Exercises, 192

References, 193

14 Backtest Statistics

- 14.1 Motivation, 195
- 14.2 Types of Backtest Statistics, 195
- 14.3 General Characteristics, 196
- 14.4 Performance, 198
 - 14.4.1 Time-Weighted Rate of Return, 198

14.5 Runs, 199

- 14.5.1 Returns Concentration, 199
- 14.5.2 Drawdown and Time under Water, 201
- 14.5.3 Runs Statistics for Performance Evaluation, 201
- 14.6 Implementation Shortfall, 202
- 14.7 Efficiency, 203
 - 14.7.1 The Sharpe Ratio, 203
 - 14.7.2 The Probabilistic Sharpe Ratio, 203
 - 14.7.3 The Deflated Sharpe Ratio, 204
 - 14.7.4 Efficiency Statistics, 205
- 14.8 Classification Scores, 206
- 14.9 Attribution, 207

Exercises, 208 References, 209 Bibliography, 209

15 Understanding Strategy Risk

- 15.1 Motivation, 211
- 15.2 Symmetric Payouts, 211
- 15.3 Asymmetric Payouts, 213
- 15.4 The Probability of Strategy Failure, 216
 - 15.4.1 Algorithm, 217
 - 15.4.2 Implementation, 217

Exercises, 219

References, 220

16 Machine Learning Asset Allocation

Motivation, 221 16.1 16.2 The Problem with Convex Portfolio Optimization, 221 163 Markowitz's Curse, 222 16.4 From Geometric to Hierarchical Relationships, 223 16.4.1 Tree Clustering, 224 16.4.2 Quasi-Diagonalization, 229 16.4.3 Recursive Bisection, 229 16.5 A Numerical Example, 231 16.6 Out-of-Sample Monte Carlo Simulations, 234 16.7 Further Research, 236 16.8 Conclusion, 238 Appendices, 239 16.A.1 Correlation-based Metric, 239 16.A.2 Inverse Variance Allocation, 239 16.A.3 Reproducing the Numerical Example, 240 16.A.4 Reproducing the Monte Carlo Experiment, 242 Exercises, 244

References, 245

PART 4 USEFUL FINANCIAL FEATURES

17	Structural	Breaks	
----	------------	--------	--

- 17.1 Motivation, 249
- 17.2 Types of Structural Break Tests, 249

211

221

247

263

281

- 17.3 CUSUM Tests, 250
 - 17.3.1 Brown-Durbin-Evans CUSUM Test on Recursive Residuals, 250
 - 17.3.2 Chu-Stinchcombe-White CUSUM Test on Levels, 251
- 17.4 Explosiveness Tests, 251
 - 17.4.1 Chow-Type Dickey-Fuller Test, 251
 - 17.4.2 Supremum Augmented Dickey-Fuller, 252
 - 17.4.3 Sub-and Super-Martingale Tests, 259

Exercises, 261

References, 261

18 Entropy Features

- 18.1 Motivation, 263
- 18.2 Shannon's Entropy, 263
- 18.3 The Plug-in (or Maximum Likelihood) Estimator, 264
- 18.4 Lempel-Ziv Estimators, 265
- 18.5 Encoding Schemes, 269
 - 18.5.1 Binary Encoding, 270
 - 18.5.2 Quantile Encoding, 270
 - 18.5.3 Sigma Encoding, 270
- 18.6 Entropy of a Gaussian Process, 271
- 18.7 Entropy and the Generalized Mean, 271
- 18.8 A Few Financial Applications of Entropy, 275
 - 18.8.1 Market Efficiency, 275
 - 18.8.2 Maximum Entropy Generation, 275
 - 18.8.3 Portfolio Concentration, 275
 - 18.8.4 Market Microstructure, 276

Exercises, 277

References, 278

Bibliography, 279

19 Microstructural Features

- 19.1 Motivation, 281
- 19.2 Review of the Literature, 281
- 19.3 First Generation: Price Sequences, 282
 - 19.3.1 The Tick Rule, 282
 - 19.3.2 The Roll Model, 282

	19.3.3	High-Low Volatility Estimator, 283				
	19.3.4	Corwin and Schultz, 284				
19.4	Second	Generation: Strategic Trade Models, 286				
	19.4.1	Kyle's Lambda, 286				
	19.4.2	Amihud's Lambda, 288				
	19.4.3	Hasbrouck's Lambda, 289				
19.5	Third G	eneration: Sequential Trade Models, 290				
	19.5.1	Probability of Information-based Trading, 290				
	19.5.2	Volume-Synchronized Probability of Informed				
		Trading, 292				
19.6	Additional Features from Microstructural Datasets, 293					
	19.6.1	Distibution of Order Sizes, 293				
	19.6.2	Cancellation Rates, Limit Orders, Market Orders, 293				
	19.6.3	Time-Weighted Average Price Execution Algorithms, 294				
	19.6.4	Options Markets, 295				
	19.6.5	Serial Correlation of Signed Order Flow, 295				
19.7	What Is	Microstructural Information?, 295				
Exercises, 296						
Refere	ences, 29	98				

PART 5 HIGH-PERFORMANCE COMPUTING RECIPES 301

20 Multiprocessing and Vectorization

- 20.1 Motivation, 303
- 20.2 Vectorization Example, 303
- 20.3 Single-Thread vs. Multithreading vs. Multiprocessing, 304
- 20.4 Atoms and Molecules, 306
 - 20.4.1 Linear Partitions, 306
 - 20.4.2 Two-Nested Loops Partitions, 307
- 20.5 Multiprocessing Engines, 309
 - 20.5.1 Preparing the Jobs, 309
 - 20.5.2 Asynchronous Calls, 311
 - 20.5.3 Unwrapping the Callback, 312
 - 20.5.4 Pickle/Unpickle Objects, 313
 - 20.5.5 Output Reduction, 313
- 20.6 Multiprocessing Example, 315

Exercises, 316

Reference, 317 Bibliography, 317

21 Brute Force and Quantum Computers

- 21.1 Motivation, 319
- 21.2 Combinatorial Optimization, 319
- 21.3 The Objective Function, 320
- 21.4 The Problem, 321
- 21.5 An Integer Optimization Approach, 321
 - 21.5.1 Pigeonhole Partitions, 321
 - 21.5.2 Feasible Static Solutions, 323
 - 21.5.3 Evaluating Trajectories, 323
- 21.6 A Numerical Example, 325
 - 21.6.1 Random Matrices, 325
 - 21.6.2 Static Solution, 326
 - 21.6.3 Dynamic Solution, 327

Exercises, 327

References, 328

22 High-Performance Computational Intelligence and Forecasting Technologies

Kesheng Wu and Horst D. Simon

- 22.1 Motivation, 329
- 22.2 Regulatory Response to the Flash Crash of 2010, 329
- 22.3 Background, 330
- 22.4 HPC Hardware, 331
- 22.5 HPC Software, 335
 - 22.5.1 Message Passing Interface, 335
 - 22.5.2 Hierarchical Data Format 5, 336
 - 22.5.3 In Situ Processing, 336
 - 22.5.4 Convergence, 337
- 22.6 Use Cases, 337
 - 22.6.1 Supernova Hunting, 337
 - 22.6.2 Blobs in Fusion Plasma, 338
 - 22.6.3 Intraday Peak Electricity Usage, 340
 - 22.6.4 The Flash Crash of 2010, 341
 - 22.6.5 Volume-synchronized Probability of Informed Trading Calibration, 346

CONTENTS

- 22.6.6 Revealing High Frequency Events with Non-uniform Fast Fourier Transform, 347
- 22.7 Summary and Call for Participation, 349
- 22.8 Acknowledgments, 350

References, 350

Index