Machine Learning for Finance

Principles and practice for financial insiders

Jannes Klaas

BIRMINGHAM - MUMBAI

Table of Contents

Preface	jx
Chapter 1: Neural Networks and Gradient-Based Optimization	1
Our journey in this book	2
What is machine learning?	4
Supervised learning	4
Unsupervised learning	5
Reinforcement learning	6
The unreasonable effectiveness of data	7
All models are wrong	7
Setting up your workspace	9
Using Kaggle kernels	9
Running notebooks locally	12
Installing TensorFlow	12
Installing Keras	13
Using data locally	13
Using the AWS deep learning AMI	13
Approximating functions	14
A forward pass	16
A logistic regressor	17
Python version of our logistic regressor	18
Optimizing model parameters	20
Measuring model loss	21
Gradient descent	22
Backpropagation	23
Parameter updates	25
Putting it all together	26
A deeper network	29
A brief introduction to Keras	33
Importing Keras	33
A two-layer model in Keras	33
Stacking layers	34
Compiling the model	35
Training the model	35
Keras and TensorFlow	36
Tensors and the computational graph	37
Exercises	39
Summary	39

Chapter 2: Applying Machine Learning to Structured Data	41
The data	42
Heuristic, feature-based, and E2E models	44
The machine learning software stack	46
The heuristic approach	46
Making predictions using the heuristic model	47
The F1 score	47
Evaluating with a confusion matrix	48
The feature engineering approach	50
A feature from intuition – fraudsters don't sleep	51
Expert insight – transfer, then cash out	53
Statistical quirks – errors in balances	53
Preparing the data for the Keras library	54
One-hot encoding	55
Entity embeddings	56
Tokenizing categories	57
Creating input models	57
Training the model	59
Creating predictive models with Keras	59
Extracting the target	59
Creating a test set	60
Creating a validation set	60
Oversampling the training data	61
Building the model	62
Creating a simple baseline	62
Building more complex models	65
A brief primer on tree-based methods	66
A simple decision tree	66
A random forest	67
XGBoost	69
E2E modeling	70
Exercises	70
Summary	70
Chapter 3: Utilizing Computer Vision	71
Convolutional Neural Networks	73
Filters on MNIST	73
Adding a second filter	75
Filters on color images	77
The building blocks of ConvNets in Keras	78
Conv2D	78
Kernel size	79
Stride size	79

Padding	80
Input shape	81
Simplified Conv2D notation	81
ReLU activation	81
MaxPooling2D	83
Flatten	84
Dense	84
	85
The model	85
Loading the data	87
Compiling and training More bells and whistles for our neural network	88 90
Momentum	90
The Adam optimizer	91
Regularization	92
L2 regularization	93
L1 regularization	93
Regularization in Keras	94
Dropout	95
Batchnorm	97
Working with big image datasets	99
Working with pretrained models	101
Modifying VGG-16	104
Random image augmentation	105
Augmentation with ImageDataGenerator	105
The modularity tradeoff	107
Computer vision beyond classification	108
Facial recognition	109
Bounding box prediction	111
Exercises	113
Summary	113
Chapter 4: Understanding Time Series	<u>115</u>
Visualization and preparation in pandas	117
Aggregate global feature statistics	118
Examining the sample time series	122
Different kinds of stationarity	126
Why stationarity matters	120
Making a time series stationary	127
•	
When to ignore stationarity issues Fast Fourier transformations	128 129
Autocorrelation	131
Establishing a training and testing regime	134

Table of Contents

A note on backtesting	136
Median forecasting	137
ARIMA	139
Kalman filters	142
Forecasting with neural networks	147
Data preparation	147
Weekdays	148
ConvID	153
Dilated and causal convolution	154
Simple RNN	156
LSTM	157
The carry	158
Recurrent dropout	160
Bayesian deep learning	161
Exercises	164
Summary	165
Chapter 5: Parsing Textual Data with Natural Language	
<u>Processing</u>	<u>167</u>
An introductory guide to spaCy	168
Named entity recognition	170
Fine-tuning the NER	176
Part-of-speech (POS) tagging	178
Rule-based matching	180
Adding custom functions to matchers	182
Adding the matcher to the pipeline	184
Combining rule-based and learning-based systems	185
Regular expressions	185
Using Python's regex module	186
Regex in pandas	187
When to use regexes and when not to	187
A text classification task	188
Preparing the data	188
Sanitizing characters	189
Lemmatization	190
Preparing the target	191
Preparing the training and test sets	191
Bag-of-words	191
TF-IDF	193
Topic modeling	194
Word embeddings	196
Preprocessing for training with word vectors	196

Loading pretrained word vectors	199
Time series models with word vectors	202
Document similarity with word embeddings	204
A quick tour of the Keras functional API	205
Attention	209
Seq2seq models	213
Seq2seq architecture overview	213
The data	214
Encoding characters	216
Creating inference models	221
Making translations	222
Exercises	225
Summary	225
Chapter 6: Using Generative Models	<u>227</u>
Understanding autoencoders	228
Autoencoder for MNIST	229
Autoencoder for credit cards	232
Visualizing latent spaces with t-SNE	236
Variational autoencoders	242
MNIST example	243
Using the Lambda layer	244
Kullback-Leibler divergence	245
Creating a custom loss	247
Using a VAE to generate data	248
VAEs for an end-to-end fraud detection system	250
VAEs for time series	251
GANs	253
A MNIST GAN	255
Understanding GAN latent vectors	263
GAN training tricks	263
Using less data – active learning	266
Using labeling budgets efficiently	266
Leveraging machines for human labeling	267
Pseudo labeling for unlabeled data	268
Using generative models	269
SGANs for fraud detection	269
Exercises	276
Summary	276
Chapter 7: Reinforcement Learning for Financial Markets	<u>277</u>
Catch – a quick guide to reinforcement learning	278

Q-learning turns RL into supervised learning	281
Defining the Q-learning model	284
Training to play Catch	284
Markov processes and the bellman equation –	
A more formal introduction to RL	287
The Bellman equation in economics	291
Advantage actor-critic models	292
Learning to balance	294
Learning to trade	306
Evolutionary strategies and genetic algorithms	310
Practical tips for RL engineering	312
Designing good reward functions	313
Careful, manual reward shaping	313
Inverse reinforcement learning	314
Learning from human preferences	314
Robust RL	315
Frontiers of RL	315
Multi-agent RL	316
Learning how to learn	317
Understanding the brain through RL	318
Exercises	319
Summary	319
Chapter 8: Privacy, Debugging, and Launching Your Products	321
Debugging data	322
How to find out whether your data is up to the task	322
What to do if you don't have enough data	324
Unit testing data	325
Keeping data private and complying with regulations	329
Preparing the data for training	332
Understanding which inputs led to which predictions	333
Debugging your model	335
Hyperparameter search with Hyperas	336
Efficient learning rate search	341
Learning rate scheduling	343
Monitoring training with TensorBoard	346
Exploding and vanishing gradients	349
Deployment	351
Launching fast	352
Understanding and monitoring metrics	352
Understanding where your data comes from	354
Performance tips	355

Using the right hardware for your problem	355
Making use of distributed training with TF estimators	355
Using optimized layers such as CuDNNLSTM	357
Optimizing your pipeline	357
Speeding up your code with Cython	360
Caching frequent requests	362
Exercises	363
Summary	363
Chapter 9: Fighting Bias	<u>365</u>
Sources of unfairness in machine learning	366
Legal perspectives	367
Observational fairness	368
Training to be fair	373
Causal learning	383
Obtaining causal models	384
Instrument variables	385
Non-linear causal models	386
Interpreting models to ensure fairness	388
Unfairness as complex system failure	395
Complex systems are intrinsically hazardous systems	395
Catastrophes are caused by multiple failures	396
Complex systems run in degraded mode	396
Human operators both cause and prevent accidents	396
Accident-free operation requires experience with failure	396
A checklist for developing fair models	397
What is the goal of the model developers?	397
Is the data biased?	397
Are errors biased?	397 397
How is feedback incorporated? Can the model be interpreted?	397
What happens to models after deployment?	398
Exercises	398
Summary	398
Chapter 10: Bayesian Inference and Probabilistic	
Programming	<u>401</u>
An intuitive guide to Bayesian inference	402
Flat prior	403
<50% prior	406
Prior and posterior	407
Markov Chain Monte Carlo	409
Metropolis-Hastings MCMC	415
From probabilistic programming to deep probabilistic programming	419

Summary	420
Farewell	421
Further reading	422
General data analysis	422
Sound science in machine learning	422
General machine learning	422
General deep learning	423
Reinforcement learning	423
Bayesian machine learning	423
Other Books You May Enjoy	<u>425</u>
Index	429