Graph Databases

Ian Robinson, Jim Webber, and Emil Eifrem

O'REILLY Beijing • Cambridge • Farnham • Koln • Sebastopol • Tokyo

Table of Contents

Foreword Preface		vii
		ix
1.	Introduction	1
	What Is a Graph?	1
	A High-Level View of the Graph Space	4
	Graph Databases	5
	Graph Compute Engines	6
	The Power of Graph Databases	8
	Performance	8
	Flexibility	8
	Agility	9
	Summary	9
2.	Options for Storing Connected Data	11
	Relational Databases Lack Relationships	11
	NOSQL Databases Also Lack Relationships	14
	Graph Databases Embrace Relationships	18
	Summary	23
3.	Data Modeling with Graphs	25
	Models and Goals	25
	The Property Graph Model	26
	Querying Graphs: An Introduction to Cypher	27
	Cypher Philosophy	27
	START	29
	MATCH	29
	RETURN	30
	Other Cypher Clauses	30

	A Comparison of Relational and Graph Modeling	31
	Relational Modeling in a Systems Management Domain	33
	Graph Modeling in a Systems Management Domain	37
	Testing the Model	38 /
	Cross-Domain Models	40
	Creating the Shakespeare Graph	44
	Beginning a Query	45
	Declaring Information Patterns to Find	46
	Constraining Matches	47
	Processing Results	48
	Query Chaining	49
	Common Modeling Pitfalls	50
	Email Provenance Problem Domain	50
	A Sensible First Iteration?	50
	Second Times the Charm	53
	Evolving the Domain	56
	Avoiding Anti-Patterns	61
	Summary	61
4.	Building a Graph Database Application	63
	Data Modeling	63
	Describe the Model in Terms of the Application's Needs \land	63
	Nodes for Things, Relationships for Structure	64
	Fine-Grained versus Generic Relationships	65
	Model Facts as Nodes	66
	Represent Complex Value Types as Nodes	69
	Time	70
	Iterative and Incremental Development	72
	Application Architecture	73
	Embedded Versus Server	74
	Clustering	78
	Load Balancing	79
	Testing	82
	Test-Driven Data Model Development	83
	Performance Testing	89
	Capacity Planning	93
	Optimization Criteria	93
	Performance	94
	Redundancy	97
	Load	97

	Summary	98
5.	Graphs in the Real World	99
	Why Organizations Choose Graph Databases	99
	Common Use Cases	100
	Social	100
	Recommendations	101
	Geo	102
	Master Data Management	103
	Network and Data Center Management	103
	Authorization and Access Control (Communications)	104
	Real-World Examples	105
	Social Recommendations (Professional Social Network)	105
	Authorization and Access Control	116
	Geo (Logistics)	124
	Summary	139
6.	Graph Database Internals	141
	Native Graph Processing	141
	Native Graph Storage	144
	Programmatic APIs	150
	Kernel API	151
	Core (or "Beans") API	151
	Traversal API	152
	Nonfunctional Characteristics	154
	Transactions	155
	Recoverability	156
	Availability	157
	Scale	159
	Summary	162
7.	Predictive Analysis with Graph Theory	163
	Depth- and Breadth-First Search	163
	Path-Finding with Dijkstra's Algorithm	164
	The A* Algorithm	173
	Graph Theory and Predictive Modeling	174
	Triadic Closures	174
	Structural Balance	176
	Local Bridges	180
	Summary	182
A.	N0SQL Overview	183

A. N0SQL Overview

Index.