BustaesfrNsk and Simulation Modeling I in Practice J

Using Excel, VBA and @RISK

MICHAEL REES

Contents

Preface	xvii
About the Author	xxiii
About the WObsite	XXV

An Introduction to Risk Assessment – Its Uses, Processes, Approaches, Benefits and Challenges

CHAPTER 1

The (Context	and Uses of Risk Assessment	3
1.1	Risk A	Assessment Examples	3
	1.1.1	Everyday Examples of Risk Management	4
	1.1.2	Prominent Risk Management Failures	5
1.2	Genera	al Challenges in Decision-Making Processes	7
	1.2.1	Balancing Intuition with Rationality	7
	1.2.2	The Presence of Biases	9
1.3	Key D	rivers of the Need for Formalised Risk Assessment in Business	
	Contex	xts	14
	1.3.1	Complexity	14
	1.3.2	Scale	15
	1.3.3	Authority and Responsibility to Identify and Execute Risk-Response	
		Measures	16
	1.3.4	Corporate Governance Guidelines	16
	1.3.5	General Organisational Effectiveness and the Creation of	
		Competitive Advantage	18
	1.3.6	Quantification Requirements	18
	1.3.7	Reflecting Risk Tolerances in Decisions and in Business Design	19
1.4	The O	bjectives and Uses of General Risk Assessment	19
	1.4.1	Adapt and Improve the Design and Structure of Plans and Projects	20
	1.4.2	Achieve Optimal Risk Mitigation within Revised Plans	20
	1.4.3	Evaluate Projects, Set Targets and Reflect Risk Tolerances in	
		Decision-Making	21

CONTENTS

•

"

	1.4.4	Manage Projects Effectively	21
	1.4.5	Construct, Select and Optimise Business and Project Portfolios	22
	1.4.6	Support the Creation of Strategic Options and Corporate Planning	25 v.>
СНАРТ	B2		
Key	Stages	of the General Risk Assessment Process	29
2.1	Overv	iew of the Process Stages	29
2.2	Proces	ss Iterations	30
2.3	Risk I	dentification	32
	1.3.1	The Importance of a Robust Risk Identification Step	32
	2.3.2	Bringing Structure into the Process	32
	2.3.3	Distinguishing Variability from Decision Risks	34
	2.3.4	Distinguishing Business Issues from Risks	34
	2.3.5	Risk Identification in Quantitative Approaches: Additional	
		Considerations	35
2.4	Risk N	Ларрing	35
	2.4.1	Key Objectives	35
	2.4.2	Challenges	35
2.5	Risk F	rioritisation and Its Potential Criteria	36
	2.5.1	Inclusion/Exclusion	36
	2.5.2	Communications Focus	37
	2.5.3	Commonality and Comparison	38
	2.5.4	Modelling Reasons	39
	2.5.5	General Size of Risks, Their Impact and Likelihood	39
	2.5.6	Influence: Mitigation and Response Measures, and Management	
		Actions	40
	2.5.7	Optimising Resource Deployment and Implementation Constraints	41
2.6	Risk F	Response: Mitigation and Exploitation	42
	2.6.1	Reduction	42
	2.6.2	Exploitation	42
	2.6.3	Transfer	42
	2.6.4	Research and Information Gathering	43
	2.6.5	Diversification	43
2.7	Projec	t Management and Monitoring	44
CHAPTE	R 3		
App	roaches	to Risk Assessment and Quantification	45
3.1	Inform	nal or Intuitive Approaches	46
3.2	Risk F	Registers without Aggregation	46
	3.2.1	Qualitative Approaches	46
	3.2.2	Quantitative Approaches	48
3.3	Risk F	Register with Aggregation (Quantitative)	50
	3.3.1	The Benefits of Aggregation	50
	3.3.2	Aggregation of Static Values	51
	3.3.3	Aggregation of Risk-Driven Occurrences and Their Impacts	52
	3.3.4	Requirements and Differences to Non-Aggregation Approaches	54

	3.4	Full Risk Modelling	56
		3.4.1 Quantitative Aggregate Risk Registers as a First Step to Full Models	56
Cŀ	IAPTE	R 4	
	Full I	ntegrated Risk Modelling: Decision-Support Benefits	58
	4.1	Key Characteristics of Full Models	59
	4.2	Overview of the Benefits of Full Risk Modelling	61
	4.3	Creating More Accurate and Realistic Models	62
		4.3.1 Reality is Uncertain: Models Should Reflect This	62
		4.3.2 Structured Process to Include All Relevant Factors	63
		4.3.3 Unambiguous Approach to Capturing Event Risks	63
		4.3.4 Inclusion of Risk Mitigation and Response Factors	66
		4.3.5 Simultaneous Occurrence of Uncertainties and Risks	66
		4.3.6 Assessing Outcomes in Non-Linear Situations	67
		4.3.7 Reflecting Operational Flexibility and Real Options	67
		4.3.8 Assessing Outcomes with Other Complex Dependencies	71
		4.3.9 Capturing Correlations, Partial Dependencies and Common	
		Causalities	73
	4.4	Using the Range of Possible Outcomes to Enhance Decision-Making	74
		4.4.1 Avoiding "The Trap of the Most Likely®-or Structural Biases	76
		4.4.2 Finding the Likelihood of Achieving a Base Case	78
		4.4.3 Economic Evaluation and Reflecting Ri§jt Tolerances	82
		4.4.4 Setting Contingencies, Targets and Objectives	83
	4.5	Supporting Transparent Assumptions and Reducing Biases	84
		4.5.1 Using Base Cases that are Separate to Risk Distributions	85
		4.5.2 General Reduction in Biases	85
		4.5.3 Reinforcing Shared Accountability	85
	4.6	Facilitating Group Work and Communication	86
		4.6.1 A Framework for Rigorous and Precise Work	86
		4.6.2 Reconcile Some Conflicting Views	86
CL	JADTE	D 5	
U	Oros	n 3 anisational Challenges Relating to Risk Modelling	87
	5 1	"We are Doing It Already"	87
	5.1	5.1.1 "Our ERM Department Deals with Those Issues"	88
		5.1.1 Our ERW Department Dears with Those issues	88
		5.1.2 "We Have Risk Registers for All Major Projects"	80
		5.1.5 We flave Risk Registers for All Major Projects	80
	52	"We Already Tried It and It Showed Unrealistic Results"	89
	5.2	5.2.1 "All Cases Were Profitable"	90
		5.2.1 "The Range of Outcomes Was Too Narrow"	90
	53	"The Models Will Not Be Usefull"	91
	5.5	5.3.1 "We Should Avoid Complicated Black Boxes!"	01
		5.3.2 "All Models Are Wrong Especially Risk Models!"	Q1
		5.3.3 "Can You Prove that It Even Work?"	97 97
			12

	5.3.4	"Why Bother to Plan Things that Might Not Even Happen?"	93
5.4	Worki	ng Effectively with Enhanced Processes and Procedures	93
	5.4.1	Selecting the Right Projects, Approach and Decision Stage	93
	5.4.2	Managing Participant Expectations	95
	5.4.3	Standardisation of Processes and Models	95
5.5	Manag	gement Processes, Culture and Change Management	96
	5.5.1	Integration with Decision Processes	96
	5.5.2	Ensuring Alignment of Risk Assessment and Modelling Processes	97
	5.5.3	Implement from the Bottom Up or the Top Down?	98
	5.5.4	Encouraging Issues to Be Escalated: Don't Shoot the Messenger!	99
	5.5.5	Sharing Accountability for Poor Decisions	99
	5.5.6	Ensuring Alignment with Incentives and Incentive Systems	100
	5.5.7	Allocation and Ownership of Contingency Budgets	101
	5.5.8	Developing Risk Cultures and Other Change Management	
		Challenges	102

The Design of Risk Models - Principles, Processes and Methodology

CHAPTER	86		
Principles of Simulation Methods 10			
6.1	Core A	Aspects of Simulation: A Descriptive Example	107
	6.1.1	The Combinatorial Effects of Multiple Inputs and Distribution of	
		Outputs	107
	6.1.2	Using Simulation to Sample Many Diverse Scenarios	110
6.2	Simula	ation as a Risk Modelling Tool	112
	6.2.1	Distributions of Input Values and Their Role	113
	6.2.2	The Effect of Dependencies between Inputs	114
	6.2.3	Key Questions Addressable using Risk-Based Simulation	114
	6.2.4	Random Numbers and the Required Number of Recalculations or	
		Iterations	115
6.3	Sensiti	ivity and Scenario Analysis: Relationship to Simulation	116
	6.3.1	Sensitivity Analysis	116
	6.3.2	Scenario Analysis	119
	6.3.3	Simulation using DataTables	121
	6.3.4	GoalSeek	121
6.4	Optim	isation Analysis and Modelling: Relationship to Simulation	122
	6.4.1	Uncertainty versus Choice	122
	6.4.2	Optimisation in the Presence of Risk and Uncertainty	129
	6.4.3	Modelling Aspects of Optimisation Situations	131
6.5	Analy	tic and Other Numerical Methods	133
	6.5.1	Analytic Methods and Closed-Form Solutions	133
	6.5.2	Combining Simulation Methods with Exact Solutions	135
6.6	The A	pplicability of Simulation Methods	135

CHAPTE	R 7		
Coce	Princip	bles of Risk Model Design	137
7.1	Model	Planning and Communication	138
	7.1.1	Decision-Support Role ''	138
	7.1.2	Planning the Approach and Communicating the Output	138
	7.1.3	Using Switches to Control the Cases and Scenarios	139
	7.1.4	Showing the Effect of Decisions versus Those of Uncertainties	140
	7.1.5	Keeping It Simple, but not Simplistic: New Insights versus	
		Modelling Errors	144
7.2	Sensiti	ivity-Driven Thinking as a Model Design Tool	146
	7.2.1	Enhancing Sensitivity Processes for Risk Modelling	150
	7.2.2	Creating Dynamic Formulae	151
	7.2.3	Example: Time Shifting for Partial Periods	153
7.3	Risk N	Apping and Process Alignment	154
	7.3.1	The Nature of Risks and Their Impacts	155
	7.3.2	Creating Alignment between Modelling and the General Risk	
		Assessment Process	156
	7.3.3	Results Interpretation within the Context of Process Stages	157
7.4	Genera	al Dependency Relationships	158
	7.4.1	Example: Commonality of Drivers of Variability	159
	7.4.2	Example: Scenario-Driven Variability	160
	7.4.3	Example: Category-Driven Variability	162
	7.4.4	Example: Fading Impacts	168
	7.4.5	Example: Partial Impact Aggregation by Category in a Risk Register	170
	7.4.6	Example: More Complex Impacts within a Category	171
7.5	Worki	ng with Existing Models	173
	7.5.1	Ensuring an Appropriate Risk Identification and Mapping	173
	7.5.2	Existing Models using Manual Processes or Embedded Procedures	174
	7.5.3	Controlling a Model Switch with a Macro at the Start and End of a	
		Simulation	175
	7.5.4	Automatically Removing Data Filters at the Start of a Simulation	176
	7.5.5	Models with DataTables	178
CHAPTE	R 8		
Mea	suring I	Risk using Statistics of Distributions	181
8.1	Defini	ng Risk More Precisely	181
	8.1.1	General Definition	181
	8.1.2	Context-Specific Risk Measurement	181
	8.1.3	Distinguishing Risk, Variability and Uncertainty	182
	8.1.4	The Use of Statistical Measures	183
8.2	Rando	om Processes and Their Visual Representation	184
	8.2.1	Density and Cumulative Forms	184
	8.2.2	Discrete, Continuous and Compound Processes	186
8.3	Percer	ntiles	187
	8.3.1	Ascending and Descending Percentiles	188
	8.3.2	Inversion and Random Sampling	189

CONTENTS

8.4	Measures of the Central Point	190
	8.4.1 Mode	190
	8.4.2 Mean or Average	191
	8.4.3 Median	193
	8.4.4 Comparisons of Mode, Mean and Median	193
8.5	Measures of Range	194
	8.5.1 Worst and Best Cases, and Difference between Percentiles	194
	8.5.2 Standard Deviation	195
8.6	Skewness and Non-Symmetry	199
	8.6.1 The Effect and Importance of Non-Symmetry	201
	8.6.2 Sources of Non-Symmetry	202
8.7	Other Measures of Risk	203
	8.7.1 Kurtosis	204
	8.7.2 Semi-Deviation	205
	8.7.3 Tail Losses, Expected Tail Losses and Value-at-Risk	206
8.8	Measuring Dependencies	207
	8.8.1 Joint Occurrence	207
	8.8.2 Correlation Coefficients	209
	8.8.3 Correlation Matrices	210
	8.8.4 Scatter Plots (X-Y Charts)	212
	8.8.5 Classical and Bespoke Tornado Diagrams	112
СНАРТЕ	R 9	
The	Selection of Distributions lor Use in Risk Models	215
9.1	Descriptions of Individual Distributions	215
	9.1.1 The Uniform Continuous Distribution	216
	9.1.2 The Bernoulli Distribution	218
	9.1.3 The Binomial Distribution	219
	9.1.4 The Triangular Distribution	220
	9.1.5 The Normal Distribution	222
	9.1.6 The Lognormal Distribution	226
	9.1.7 The Beta and Beta General Distributions	232
	9.1.8 The PERT Distribution	234
	9.1.9 The Poisson Distribution	236
	9.1.10 The Geometric Distribution	238
	9.1.11 The Negative Binomial Distribution	240
	9.1.12 The Exponential Distribution	241
	9.1.13 The Weibull Distribution	242
	9.1.14 The Gamma Distribution	242
	9.1.15 The General Discrete Distribution	244
	9.1.16 The Integer Uniform Distribution	245
	9.1.17 The Hypergeometric Distribution	245
	9.1.18 The Pareto Distribution	246
	9.1.19 The Extreme Value Distributions	246
	9.1.20 The Logistic Distribution	250
	9.1.21 The Log-Logistic Distribution	251
	9.1.22 The Student (f), Chi-Squared and F-Distributions	252

9.2	A Framework for Distribution Selection and Use	256
	9.2.1 Scientific and Conceptual Approaches	257
	9.2.2 Data-Driven Approaches	258
	9.2.3 Industry Standards '*	259
	9.2.4 Pragmatic Approaches: Distributions, Parameters and Expert Input	259
9.3	Approximation of Distributions with Each Other	263
	9.3.1 Modelling Choices	263
	9.3.2 Distribution Comparison and Parameter Matching	265
	9.3.3 Some Potential Pitfalls Associated with Distribution Approximations	267
CHAPTE	R 10	
Crea	ting Samples from Distributions	273
10.1	Readily Available Inverse Functions	274
	10.1.1 Functions Provided Directly in Excel	274
	10.1.2 Functions Whose Formulae Can Easily Be Created	276
10.2	Functions Requiring Lookup and Search Methods	277
	10.2.1 Lookup Tables	277
	10.2.2 Search Methods	278
10.3	Comparing Calculated Samples with Those in @RISK	279
10.4	Creating User-Defined Inverse Functions	280
	10.4.1 Normal Distribution >	281
	10.4.2 Beta and Beta General Distributions	282
	10.4.3 Binomial Distribution	283
	10.4.4 Lognormal Distribution	283
	10.4.5 Bernoulli Distribution	284
	10.4.6 Triangular Distribution	284
	10.4.7 PERT Distribution	284
	10.4.8 Geometric Distribution	285
	10.4.9 Weibull Distribution	285
	10.4.10 Weibull Distribution with Percentile Inputs	285
	10.4.11 Poisson Distribution	285
	10.4.12 General Discrete Distribution	287
10.5	Other Generalisations	287
	10.5.1 Iterative Methods using Specific Numerical Techniques	287
	10.5.2 Creating an Add-In	289
CHAPTE	R 11	
Mod	elling Dependencies between Sources ol Risk	291
11.1	Parameter Dependency and Partial Causality	291
	11.1.1 Example: Conditional Probabilities	293
	11.1.2 Example: Common Risk Drivers	293
	11.1.3 Example: Category Risk Drivers	294
	11.1.4 Example: Phased Projects	294
	11.1.5 Example: Economic Scenarios for the Price of a Base Commodity	295
	11.1.6 Example: Prices of a Derivative Product	296
	11.1.7 Example: Prices of Several Derivative Products	297

	11.1.8 Example: Oil Price and Rig Cost	297
	11.1.9 Example: Competitors and Market Share	298
	11.1.10 Example: Resampling or Data-Structure-Driven Dependence	299
	11.1.11 Implied Correlations within Parameter Dependency Relationships	302
11.2	Dependencies between Sampling Processes	302
	11.2.1 Correlated Sampling	303
	11.2.2 Copulas	304
	11.2.3 Comparison and Selection of Parameter-Dependency and Sampling	
	Relationships	306
	11.2.4 Creating Correlated Samples in Excel using Cholesky Factorisation	309
	11.2.5 Working with Valid Correlation Matrices	313
	11.2.6 Correlation of Time Series	315
11.3	Dependencies within Time Series	316
	11.3.1 Geometric Brownian Motion	317
	11.3.2 Mean-Reversion Models	319,
	11.3.3 Moving Average Models	321
	11.3.4 Autoregressive Models	321
	11.3.5 Co-Directional (Integrated) Processes	323
	11.3.6 Random State Switching and Markov Chains	323

WUffl

Getting Started with Simulation in Practice

CHAPTER	R12		
Using	Using Excel/VBA lor Simulation Modelling		
12.1	Description of Example Model and Uncertainty Ranges	327	
12.2	Creating and Running a Simulation: Core Steps	328	
	12.2.1 Using Random Values	328	
	12.2.2 Using a Macro to Perform Repeated Recalculations and Store the		
	Results	330	
	12.2.3 Working with the VBE and Inserting a VBA Code Module	330	
	12.2.4 Automating Model Recalculation	331	
	12.2.5 Creating a Loop to Recalculate Many Times	331	
	12.2.6 Adding Comments, Indentation and Line Breaks	332	
	12.2.7 Defining Outputs, Storing Results, Named Ranges and Assignment		
	Statements	333	
	12.2.8 Running the Simulation	334	
12.3	Basic Results Analysis	335	
	12.3.1 Building Key Statistical Measures and Graphs of the Results	335	
	12.3.2 Clearing Previous Results	336	
	12.3.3 Modularising the Code	338	
	12.3.4 Timing and Progress Monitoring	339	
12.4	Other Simple Features	339	
	12.4.1 Taking Inputs from the User at Run Time	339	
	12.4.2 Storing Multiple Outputs	340	

12.5	Generalising the Core Capabilities	340
	12.5.1 Using Selected VBA Best Practices	340
	12.5.2 Improving Speed	341
	12.5.3 Creating User-Defined Function®	342
12.6	Optimising Model Structure and Layout	343
	12.6.1 Simulation Control Sheet	343
	12.6.2 Output Links Sheet	344
	12.6.3 Results Sheets	344
	12.6.4 Use of Analysis Sheets	346
	12.6.5 Multiple Simulations	348
12.7	Bringing it All Together: Examples Using the Simulation Template	350
	12.7.1 Model 1: Aggregation of a Risk Register using Bernoulli and PERT	
	Distributions	351
	12.7.2 Model 2: Cost Estimation using Lognormal Distributions	352
	12.7.3 Model 3: Cost Estimation using Weibull Percentile Parameters	352
	12.7.4 Model 4: Cost Estimation using Correlated Distributions	353
	12.7.5 Model 5: Valuing Operational Flexibility	353
12.8	Further Possible uses of VBA	354
	12.8.1 Creating Percentile Parameters	354
	12.8.2 Distribution Samples as User-Defined Functions	354
	12.8.3 Probability Samples as User-Defined Array Functions	355
	12.8.4 Correlated Probability Samples as User-Defined Array Functions	356
	12.8.5 Assigning Values from VBA into Excel	358
	12.8.6 Controlling the Random Number Sequence	359
	12.8.7 Sequencing and Freezing Distribution Samples	363
	12.8.8 Practical Challenges in using Arrays and Assignment Operations	364
	12.8.9 Bespoke Random Number Algorithms	364
	12.8.10 Other Aspects	364
CHAPTE	R 13	
Usin	g ©RISK for Simulation Modelling	365
13.1	Description of Example Model and Uncertainty Ranges	365

13.2 Creating and Running a Simulation: Core Steps and Basic Icons 366 13.2.1 Using Distributions to Create Random Samples 368 13.2.2 Reviewing the Effect of Random Samples 369 13.2.3 Adding an Output 370 13.2.4 Running the Simulation 370 13.2.5 Viewing the Results 370 13.2.6 Results Storage 373 13.2.7 Multiple Simulations 373 13.2.8 Results Statistics Functions 374 13^.3 Simulation Control: An Introduction 377 13.3.1 Simulation Settings: An Overview 377 13.3.2 Static View 377

13.3.3	Random Number Generator and Sampling Methods	379
13.3.4	Comparison of Excel and @RISK Samples	381

13.3.4 Comparison of Excel and @RISK Samples 13.3.5 Number of Iterations

382

	13.3.6 Repeating a Simulation and Fixing the Seed	382
	13.3.7 Simulation Speed	383
13.4	Further Core Features	384
	13.4.1 Alternate Parameters	384
	13.4.2 Input Statistics Functions	384
	13.4.3 Creating Dependencies and Correlations	385
	13.4.4 Scatter Plots and Tornado Graphs	385
	13.4.5 Special Applications of Distributions	395
	13.4.6 Additional Graphical Outputs and Analysis Tools	400
	13.4.7 Model Auditing and Sense Checking	405
13.5	Working with Macros and the @RISK Macro Language	405
	13.5.1 Using Macros with @RISK	405
	13.5.2 The @RISK Macro Language or Developer Kit: An Introduction	407
	13.5.3 Using the XDK to Analyse Random Number Generator and	
	Sampling Methods	409.,
	13.5.4 Using the XDK to Generate Reports of Simulation Data	417
13.6	Additional In-Built Applications and Features: An Introduction	417
	13.6.1 Optimisation	419
	13.6.2 Fitting Distributions and Time Series to Data	420
	13.6.3 MS Project Integration	421
	13.6.4 Other Features	424
13.7	Benefits of @RISK over Excel/VBA Approaches: A Brief Summary	421
Index		425