Econometrics

FUMIO HAYASHI

PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD

Contents

	List	of Figures	xvii
	Pref	ace ;	xix
1	Fini	te-Sample Properties of OLS	3
	1.1	The Classical Linear Regression Model	3
		The Linearity Assumption	4
		Matrix Notation	6
		The Strict Exogeneity Assumption	7
		Implications of Strict Exogeneity	8
		Strict Exogeneity in Time-Series Models	9
		Other Assumptions of the Model	10
		The Classical Regression Model for Random Samples	12
		"Fixed" Regressors	13
	1.2	The Algebra of Least Squares	15
		OLS Minimizes the Sum of Squared Residuals	15
		Normal Equations	16
		Two Expressions for the OLS Estimator	18
		More Concepts and Algebra	18
		Influential Analysis (optional)	21
		A Note on the Computation of OLS Estimates	23
	1.3	Finite-Sample Properties of OLS	27
		Finite-Sample Distribution of b	27
		Finite-Sample Properties of s^2	30
		Estimate of $Var(b \mid X)$	31
	1.4	Hypothesis Testing under Normality	33
		Normally Distributed Error Terms	33
		Testing Hypotheses about Individual Regression Coefficients	35
		Decision Rule for the f-Test	37
		Confidence Interval	38

		p-Value "	38
		Lineai" Hypotheses	39
		The F-Test;	40
		A More Convenient Expression for F	42
		f versus F	43
		An Example of a Test Statistic Whose Distribution Depends on X	45
	1.5	Relation to Maximum Likelihood	47
		The Maximum Likelihood Principle	47
		Conditional versus Unconditional Likelihood	47
		The Log Likelihood for the Regression Model	48
		ML via Concentrated Likelihood	48
		Cramer-Rao Bound for the Classical Regression Model	49
		The F-Test as a Likelihood Ratio Test	52
		Quasi-Maximum Likelihood	53
	1.6	Generalized Least Squares (GLS)	54
		Consequence of Relaxing Assumption 1.4	55
		Efficient Estimation with Known V ,	55
		A Special Case: Weighted Least Squares (WLS)	58
		Limiting Nature of GLS	58
	1.7	Application: Returns to Scale in Electricity Supply	60
		The Electricity Supply Industry	60
		The Data	60
		Why Do We Need Econometrics?	61
		The Cobb-Douglas Technology	62
		How Do We Know Things Are Cobb-Douglas?	63
		Are the OLS Assumptions Satisfied?	64
		Restricted Least Squares	65
		Testing the Homogeneity of the Cost Function	65
		Detour: A Cautionary Note on R^2	67
		Testing Constant Returns to Scale	67
		Importance of Plotting Residuals	68
		Subsequent Developments	68
	Proł	blem Set	71
	Ans	wers to Selected Questions	84
2	Lar	ge-Sample Theory	88
	2.1	Review of Limit Theorems for Sequences of Random Variables	88
		Various Modes of Convergence	89
		Three Useful Results	92

	Viewing Estimators as Sequences of Random Variables	94
	Laws of Large Numbers and Central Limit Theorems	95
2.2	Fundamental Concepts in Time-Series Analysis	97
	Need for Ergodic Stationarity	97
	Various Classes of Stochastic Processes	98
	Different Formulation of Lack of Serial Dependence	106
	The CLT for Ergodic Stationary Martingale Differences Sequences	106
2.3	Large-Sample Distribution of the OLS Estimator	109
	The Model	109
	Asymptotic Distribution of the OLS Estimator	113
	s^2 Is Consistent.	115
2.4	Hypothesis Testing	117
	Testing Linear Hypotheses	117
	• The Test Is Consistent-	119
	Asymptotic Power	120
	Testing Nonlinear Hypotheses	121
2.5	Estimating E(e?x,X;) Consistently	123
	Using Residuals for the Errors	123
	Data Matrix Representation of S	125
	Finite-Sample Considerations	125
2.6	Implications of Conditional Homoskedasticity	126
	Conditional versus Unconditional Homoskedasticity	126
	Reduction to Finite-Sample Formulas	127
	Large-Sample Distribution of t and F Statistics	128
	Variations of Asymptotic Tests under Conditional	
	Homoskedasticity	129
2.7	Testing Conditional Homoskedasticity	131
2.8	Estimation with Parameterized Conditional Heteroskedasticity	
	(optional)	133
	The Functional Form	133
	WLS with Known a	134
	Regression of e^2 on z, Provides a Consistent Estimate of a	135
	WLS with Estimated a	136
	OLS versus WLS	137
2.9	Least Squares Projection	137
	Optimally Predicting the Value of the Dependent Variable	138
	Best. Linear Predictor	139
	OLS Consistently Estimates the Projection Coefficients	. 140

	2.10	Testing for Serial Con-elation	141
		Box-Pierce and Ljung-Box ,	142
		Sample Autocorrelations Calculated from Residuals	144
		Testing with Predetermined, but Not Strictly Exogenous,	
		Regressors	146
		An Auxiliary Regression-Based Test	147
	2.11	Application: Rational Expectations Econometrics	150
		The Efficient Market Hypotheses	150
		Testable Implications	152
		Testing forjSerial Correlation	153
		Is the Nominal Interest Rate the Optimal Predictor?	156
		R, Is Not Strictly Exogenous	158
		Subsequent Developments	159
	2.12	Time Regressions	160
		The Asymptotic Distribution of the OLS Estimator	161
		Hypothesis Testing for Time Regressions	163
	Appe	endix 2.A: Asymptotics with Fixed Regressors	164
	Appe	endix 2 .B: Proof of Proposition 2.10	165
	Prob	lem Set	168
	Ansv	vers to Selected Questions	183
3	Single	e-Equation GMIV1	186
	3.1	Endogeneity Bias: Working's Example	187
		A Simultaneous Equations Model of Market Equilibrium	187
		Endogeneity Bias	188
		Observable Supply Shifters	189
	3.2	More Examples	193
		A Simple Macroeconometric Model	193
		Errors-in-Variables	194
		Production Function	196
	3.3	The Genera] Formulation	198
		Regressors and Instruments	198
		Identification	200
		Order Condition for Identification	202
		The Assumption for Asymptotic Normality	202
	3.4	Generalized Method of Moments Defined	204
		Method of Moments	205
		Generalized Method of Moments	206
		Sampling Error	207

Contents

	3.5	Large-Sample Properties of GMM	208
		Asymptotic Distribution of the GMM Estimator,	209
		Estimation of Error Variance	210
		Hypothesis Testing	211
		Estimation of S	212
		Efficient GMM Estimator	212
		Asymptotic Power •	214
		Small-Sample Properties	215
	3.6	Testing Overidentifying Restrictions	217
		Testing Subsets of Orthogonality Conditions	218
	3.7	Hypothesis Testing by the Likelihood-Ratio Principle	222
		The <i>LR</i> Statistic ¹ for the Regression Model	223
		Variable Addition Test (optional)	224
	3.8	Implications of Conditional Homoskedasticity	225
		Efficient GMM Becomes 2SLS	226
		J Becomes Sargan's Statistic	227
		Small-Sample Properties of 2SLS	229
		Alternative Derivations of 2SLS	229
		When Regressors Are Predetermined	231
		Testing a Subset of Orthogonality Conditions	232
		Testing Conditional Homoskedasticity	234
		Testing for Serial Correlation	234
	3.9	Application: Returns from Schooling	236
		The NLS-Y Data	236
		The Semi-Log Wage Equation	237
		Omitted Variable Bias	238
		IQ as the Measure of Ability	239
		Errors-in-Variables	239
		2SLS to Correct for the Bias	242
		Subsequent Developments	243
	Prol	blem Set	244
	Ans	wers to Selected Questions ••	254
4	Multiple-Equation GMM		258
	4.1	The Multiple-Equation Model .	259
		Linearity	259
		Stationarity and Ergodicity	260
		Orthogonality Conditions	261
		Identification	262

ix

	The Assumption for Asymptotic Normality	264
	Connection to the "Complete" System of Simultaneous Equations	265
4.2	Multiple-Equation GMM Defined	265
4.3	Large-Sample Theory	268
4.4	Single-Equation versus Multiple-Equation Estimation	271
	When Are They "Equivalent"?	272
	loint Estimation Can Be Hazardous	273
4.5	Special Cases of Multiple-Equation GMM: FIVE, 3SLS, and SUR	274
	Conditional Homoskedasticity	274
	Full-Information Instrumental Variables Efficient (FIVE)	275
	Three-Stage Least Squares (3SLS)	276
	Seemingly Unrelated Regressions (SUR)	279
	SUR versus OLS	281
4.6	Common Coefficients	286
	The Model with Common Coefficients	286
	The GMM Estimator	287
	Imposing Conditional Homoskedasticity	288
	Pooled OLS -	290
	Beautifying the Formulas	292
	The Restriction That Isn't	293
4.7	Application: Interrelated Factor Demands	296
	The Translog Cost Function	296
	Factor Shares	297
	Substitution Elasticities .	298
	Properties of Cost Functions	299
	Stochastic Specifications	300
	The Nature of Restrictions	301
	Multivariate Regression Subject to Cross-Equation Restrictions	302
	Which Equation to Delete?	304
	Results	305
Prob	blem Set	308
Ans	wers to Selected Questions	320
Pan	el Data	323
5.1	The Error-Components Model	324
	Error Components	324
	Group Means	327
	A Reparameterization	327
5.2	The Fixed-Effects Estimator	330

6

	The Formula -	330
	Large-Sample Properties	331
	Digression: When », Is Spherical	333
	Random Effects versus Fixed Effects	334
	Relaxing Conditional Homoskedasticity	335
5.3	Unbalanced Panels (optional)	337
	"Zeroing Out" Missing Observations	338
	-Zeroing Out versus Compression	339
	No Selectivity Bias	340
5.4	Application: International Differences in Growth Rates	342
	Derivation of the Estimation Equation	342
	Appending the Error Term	343
	Treatment of a,	344
	Consistent Estimation of Speed of Convergence	345
App	endix 5.A: Distribution of Hausman Statistic	346
Prol	blem Set	349
Ans	wers to Selected Questions	363
Ser	ial Correlation	365
6.1	Modeling Serial Correlation: Linear Processes	365
	MA()</td <td>366</td>	366
	MA(oo) as a Mean Square Limit	366
	Filters	369
	Inverting Lag Polynomials	372
6.2	ARMA Processes	375
	AR(1) and Its MA(00) Representation	376
	Autocovari ances of AR (1)	378
	AR(p) and Its MA(oo) Representation	378
	ARMA(p, q)	380
	ARMA(/?, q) with Common Roots	382
	Invertibility	383
	Autocovariance-Generating Function and the Spectrum	383
6.3	Vector Processes	387
6.4	Estimating Autoregressions	392
	Estimation of AR(1)	392
	Estimation of AR(p)	393
	Choice of Lag Length	394
	Estimation of VARs	397
	Estimation of ARMA(p, q)	398

	6.5	Asymptotics for Sample Means of Serially Correlated Processes	400
		LLN for Covariance-Stationary Processes ,	401
		Two Central Limit Theorems	402
		Multivariate Extension !"	404
	6.6	Incorporating Serial Correlation in GMM	406
		The Model and Asymptotic Results	406
		Estimating S When Autocovariances Vanish after Finite Lags	407
		Using Kernels to Estimate S	408
		VARHAC	410
	6.7	Estimation under Conditional Homoskedasticity (Optional)	413
		Kernel-Based Estimation of S under Conditional Homoskedasticity	413
		Data Matrix Representation of Estimated Long-Run Variance	414
		Relation to GLS	415
	6.8	Application: Forward Exchange Rates as Optimal Predictors	418
		The Market Efficiency Hypothesis	419
		Testing Whether the Unconditional Mean Is Zero	420
		Regression Tests •	423
	Prob	lem Set	428
	Ansv	wers to Selected Questions	441
7	Extr	emum Estimators	445
	7.1	Extremum Estimators	446
		"Measurability" of 9	446
		Two Classes of Extremum Estimators	447
		Maximum Likelihood (ML)	448
		Conditional Maximum Likelihood	450
		Invariance of ML	452
		Nonlinear Least Squares (NLS)	453
		Linear and Nonlinear GMM	454
	7.2	Consistency	456
		Two Consistency Theorems for Extremum Estimators	456
		Two Consistency Theorems for Extremum Estimators Consistency of M-Estimators	456 458
		Two Consistency Theorems for Extremum Estimators Consistency of M-Estimators Concavity after Reparameterization	456 458 461
		Two Consistency Theorems for Extremum Estimators Consistency of M-Estimators Concavity after Reparameterization Identification in NLS and ML	456 458 461 462
		Two Consistency Theorems for Extremum Estimators Consistency of M-Estimators Concavity after Reparameterization Identification in NLS and ML Consistency of GMM	456 458 461 462 467
	7.3	Two Consistency Theorems for Extremum Estimators Consistency of M-Estimators Concavity after Reparameterization Identification in NLS and ML Consistency of GMM Asymptotic Normality	456 458 461 462 467 469
	7.3	Two Consistency Theorems for Extremum Estimators Consistency of M-Estimators Concavity after Reparameterization Identification in NLS and ML Consistency of GMM Asymptotic Normality Asymptotic Normality of M-Estimators	456 458 461 462 467 469 470
	7.3	Two Consistency Theorems for Extremum Estimators Consistency of M-Estimators Concavity after Reparameterization Identification in NLS and ML Consistency of GMM Asymptotic Normality Asymptotic Normality of M-Estimators Consistent Asymptotic Variance Estimation	456 458 461 462 467 469 470 473

		Two Examples .	476
		Asymptotic Normality of GMM	478
		GMM versus ML	481
		Expressing the Sampling Error in a Common Format	483
	7.4	Hypothesis Testing	487
		The Null Hypothesis	487
		The Working Assumptions	489
		The Wald Statistic	489
		The Lagrange Multiplier (LM) Statistic	491
		The Likelihood Ratio (LR) Statistic	493
		Summary of-'the Trinity	494
	• 7.5	Numerical Optimization	497
		Newton-Raphson'	497
		Gauss-Newton	498
		Writing Newton-Raphson and Gauss-Newton in a Common	
		Format	498
		Equations Nonlinear in Parameters Only	499
	Prob	lem Set	501
	Ansv	wers to Selected Questions	505
8	Exa	mples of Maximum Likelihood	507
	8.1	Qualitative Response (QR) Models	507
		Score and Hessian for Observation t	508
		Consistency	509
		Asymptotic Normality	510
	8.2	Truncated Regression Models	511
		The Model	511
		Truncated Distributions	512
		The Likelihood Function	513
		Reparameterizing the Likelihood Function	514
		Verifying Consistency and Asymptotic Normality	515
		Recovering Original Parameters	517
	8.3	Censored Regression (Tobit) Models	518
		Tobit Likelihood Function	518
		Reparameterization	519
	8.4	Multivariate Regressions	521
		The Multivariate Regression Model Restated	522
		The Likelihood Function	523
		Maximizing the Likelihood Function	524

		Consistency and Asymptotic-Normality	525
	8.5	FIML ,	526
		The Multiple-Equation Model with Common Instruments Restated	526
		The Complete System of Simultaneous Equations	529
		Relationship between (To, B_0) and 8_0	530
		The FIML Likelihood Function	531
		The FIML Concentrated Likelihood Function •	532
		Testing Overidentifying Restrictions	533
		Properties of the FIML Estimator	533
		ML Estimation of the SUR Model	535
	8.6	LIML	538
		LIML Defined I [;]	538
		Computation of LIML	540
		LIML versus 2SLS	542
	8.7	Serially Correlated Observations	543
		Two Questions	543
		Unconditional ML for Dependent Observations	545
		ML Estimation of AR(1) Processes	546
		Conditional ML Estimation of AR(1) Processes	547
		Conditional ML Estimation of $AR(p)$ and $VAR(p)$ Processes	549
	Prob	lem Set	551
9	Unit	-Root Econometrics	557
	9.1	Modeling Trends	557
		Integrated Processes	558
		Why Is It Important to Know if the Process Is 1(1)?	560
		Which Should Be Taken as the Null, 1(0) or 1(1)?	562
		Other Approaches to Modeling Trends	563
	9.2	Tools for Unit-Root Econometrics	563
		Linear 1(0) Processes	563
		Approximating 1(1) by a Random Walk	564
		Relation to ARMA Models	566
		The Wiener Process	567
		A Useful Lemma	570
	9.3	Dickey-Fuller Tests	573
		The AR(1) Model	573
		Deriving the Limiting Distribution under the 1(1) Null	574
		Incorporating the Intercept	577
		Incorporating Time Trend	581

Contents		XV
9.4	Augmented Dickey-Fuller Tests •	585
	The Augmented Autoregression	585
	Limiting Distribution of the OLS Estimator	586
	Deriving Test Statistics	590
	Testing Hypotheses about f	591
	What to Do When <i>p</i> Is Unknown?	592
	A Suggestion for the Choice of $p_{max}(T)$	594
	Including the Intercept in the Regression	595
	Incorporating Time Trend	597
	Summary of the DF and ADF Tests and Other Unit-Root Tests	599
9.5	Which Unif-Root Test to Use?	601
	Local-to-Unity Asymptotics	602
	Small-Sample Properties	602
9.6	Application: Purchasing Power Parity	603
	The Embarrassing Resiliency of the Random Walk Model?	604
Prob	lem Set	605
Ansv	vers to Selected Questions	619
10 Coin	tegration	623
10.1	Cointegrated Systems	624
	Linear Vector 1(0) and 1(1) Processes	624
	The Beveridge-Nelson Decomposition	627
	Cointegration Defined	629
10.2	Alternative Representations of Cointegrated Systems	633
	Phillips's Triangular Representation	633
	VAR and Cointegration	636
	The Vector Error-Correction Model (VECM)	638
	Johansen's ML Procedure	640
10.3	Testing the Null of No Cointegration	643
	Spurious Regressions	643
	The Residual-Based Test for Cointegration	644
	Testing the Null of Cointegration	649
10.4	Inference on Cointegrating Vectors	650
	The SOLS Estimator	650
	The Bivariate Example	652
	Continuing with the Bivariate Example	653
	Allowing for Serial Correlation	654
	General Case	657
	Other Estimators and Finite-Sample Properties	658

10.5 Application: The Demand for Money in the United States	659
The Data ,	660
(m - p, y, R) as a Cointegrated System	660
DOLS	662
Unstable Money Demand?	663
Problem Set	665
Appendix A: Partitioned Matrices and Kronecker Products	670
Addition and Multiplication of Partitioned Matrices	671
Inverting Partitioned Matrices	672
Index	675