FORECASTING

Methods and Applications Third Edition

Spyros Makridakis

European Institute of Business Administration (INSEAD)

Steven C. Wheelwright

Harvard University, Graduate School of Business Administration

Rob J. Hyndman

Monash University, Department of Mathematics and Statistics

	Jniversität Darmstadt
Fachbereich 1	
	schaftliche Bibliothek
Inventar-Nr.:	S6, Frq
Abstell-Nr.:	A14/1851
	/ *•••••
	E 7
	

John Wiley & Sons, Inc.

CONTENTS

- I / THE FORECASTING PERSPECTIVE I
- I/I Why forecast? 2
- I/2 An overview of forecasting techniques 6
 - V2/I Explanatory versus time series forecasting 10
 - 1/2/2 Qualitative forecasting 12
- I/3 The basic steps in a forecasting task I3

References and selected bibliography 17

Exercises 19

2 / BASIC FORECASTING TOOLS 20

- 2/I Time series and cross-sectional data 21
- 2/2 Graphical summaries 23
 2/2/1 Time plots and time series patterns 24
 2/2/2 Seasonal plots 26
 2/2/3 Scatterplots 27
- 2/3Numerical summaries282/3/1Univariate statistics292/3/2Bivariate statistics342/3/3Autocorrelation38
- 2/4 Measuring forecast accuracy 41
 2/4/1 Standard statistical measures 42
 2/4/2 Out-of-sample accuracy measurement 45
 2/4/3 Comparing forecast methods 46
 2/4/4 Theil's U-statistic 48
 - 2/4/5 ACF of forecast error 50

- 2/5 Prediction intervals 52
- 2/6 Least squares estimates 54 2/6/1 Discovering and describing relationships 59
- 2/7 Transformations and adjustments 63
 - 2/7/1 Mathematical transformations 63
 - 2/7/2 Calendar adjustments 67
 - 2/7/3 Adjustments for inflation and population changes 70
- Appendices 71
 - 2-A Notation for quantitative forecasting 71
 - 2-B Summation sign \sum 72

References and selected bibliography 74

Exercises 76

- 3 / TIME SERIES DECOMPOSITION 81
- 3/I Principles of decomposition 84 3/I/I Decomposition models 84 3/I/2 Decomposition graphics 87 3/I/3 Seasonal adjustment 88
- 3/2 Moving averages 89
 - 3/2/1 Simple moving averages 89 3/2/2 Centered moving averages 94 3/2/3 Double moving averages 98
 - 3/2/4 Weighted moving averages 98
- 3/3 Local regression smoothing 101 3/3/1 Loess 104
- 3/4 Classical decomposition 106 3/4/1 Additive decomposition 107 3/4/2 Multiplicative decomposition 109

3/4/3 Variations on classical decomposition 112 3/5 Census Bureau methods 113 3/5/1 First iteration 114 3/5/2 Later Iterations 118 3/5/3 Extensions to X-I2-ARIMA 119 3/6 STL decomposition 121 3/6/1 Inner loop 122 3/6/2 Outer loop 123 3/6/3 Choosing the STL parameters 124 3/6/4 Comparing STL with X-12-ARIMA 124

3/7 Forecasting and decomposition 125

References and selected bibliography 127

Exercises 130

4 / EXPONENTIAL SMOOTHING METHODS 135

- 4/I The forecasting scenario 138
- 4/2 Averaging methods 141 4/2/1 The mean 141 4/2/2 Moving averages 142
- 4/3 Exponential smoothing methods 147
 - 4/3/1 Single exponential smoothing 147
 - 4/3/2 Single exponential smoothing: an adaptive approach 155
 - 4/3/3 Hot's linear method 158
 - 4/3/4 Holt-Winters' trend and seasonality method 161
 - 4/3/5 Exponential smoothing: Pegels' classification 169
- 4/4 A comparison of methods 171
- 4/5 General aspects of smoothing - methods 174

- 4/5/1 Initialization 174 4/5/2 Optimization 176 4/5/3 Prediction intervals 177
- References and selected bibliography 179

Exercises 181

5 / SIMPLE REGRESSION 185

- 5/I Regression methods 186
- 5/2 Simple regression 187
 - 5/2/1 Least squares estimation 188
 - S/2/2 The correlation coefficient 193
 - \$/2/3 Cautions in using correlation 196
 - 5/2/4 Simple regression and the
 - 5/2/5 Residuals, outliers, and Influential observations 203
 - 5/2/6 Correlation and causation 208
- 5/3 Inference and forecasting with simple regression 208
 - 5/3/1 Regression as statistical modeling 209
 - 5/3/2 The *F*-test for overall significance 211
 - 5/3/3 Confidence intervals for individual coefficients 215
 - 5/3/4 *t*-tests for individual coefficients 217
 - 5/3/5 Forecasting using the simple regression model 218
- 5/4 Non-linear relationships 221
 - 5/4/1 Non-linearity in the parameters 222
 - 5/4/2 Using logarithms to form linear models 224
 - 5/4/3 Local regression 224

Appendixes 228

S-A Determining the values of a and b 228

References and selected bibliography 230 Exercises 231

6 / MULTIPLE REGRESSION 240

- 6/1 Introduction to multiple linear regression 241
 - 6/l/l Multiple regression model: theory and practice 248
 - 6//1/2 Solving for the regression coefficients 250
 - 6/1/3 Multiple regression and the coefficient of determination 251
 - 6/1/4 The *F*-test for overall significance 252
 - 6/1/5 Individual coefficients: confidence intervals and *t*-tests 255
 - 6/1/6 The assumptions behind multiple linear regression models 259
- 6/2 Regression with time series 263
 - 6/2/I Checking independence of residuals 265
 - 6/2/2 Time-related explanatory variables 269
- 6/3 Selecting variables 274* 6/3/1 The long list 276 6/3/2 The short list 277 6/3/3 Best subsets regression 279 6/3/4 Stepwise regression 285
- 6/4 Multicollinearity 287
 - 6/4/1 Multicollinearity when there are two regressors 289
 - 6/4/2 Multicollinearity when there are more than two regressors 289
- 6/5 Multiple regression and forecasting 291
 - 6/5/1 Example: cross-sectional regression and forecasting 292
 - 6/5/2 Example: time series regression and forecasting 294
 - 6/5/3 Recapitulation 298

- 6/6 Econometric models 299
 6/6/1 The basis of econometric modeling 299
 6/6/2 The advantages and drawbacks of econometric methods 301
- Appendixes 303 6-A The Durbin-Watson statistic 303

References and selected bibliography 305

Exercises 306

7 / THE BOX-JENKINS METHODOLOGY FOR ARIMA MODELS 311

- 7/I Examining correlations in times series data 313
 - 7/I/I The autocorrelation function 313
 - 7/1/2 A white noise model 317
 - 7/1/3 The sampling distribution of autocorrelations 317
 - 7/1/4 Portmanteau tests 318
 - 7/1/5 The partial autocorrelation coefficient 320
 - 7/1/6 Recognizing-seasonality in a time series 322
 - 7/1/7 Example: Pigs slaughtered 322
- 7/2 Examining stationarity of time series data 324
 - 7/2/1 Removing non-stationarity in a time series 326
 - 7/2/2 A random walk model 329
 - 7/2/3 Tests for statationarity 329
 - 7/2/4 Seasonal differencing 331
 - 7/2/S Backshift notion 334
- 7/3 ARIMA models for times series data 335
 - 7/3/I An autoregressive model of order one 337

- 7/3/2 A moving average model of order one 339
- 7/3/3 Higher-order autoregressive models 339
- 7/3/4 Higher-order moving average models 342
- 7/3/5 Mixtures: ARIMA models 344
- 7/3/6 Mixtures: ARIMA models 345
- 7/3/7 Seasonality and ARIMA models 346
- 7/4 Identification 347
 - 7/4/I Example I: A non-seasonal time series 349
 - 7/4/2 Example 2: A seasonal time series 352
 - 7/4/3 Example 3: A seasonal time series needing transformation 3547/4/4 Recapitulation 357

7/5 Estimating the parameters 358

- 7/6 Identification revisited 360 7/6/1 Example 1: Internet usage 362
 - 7/6/2 Example 2: Sales of printing/ writing paper 362
- 7/7 Diagnostic checking 364
- 7/8 Forecasting with ARIMA , models 366
 - 7/8/1 Point forecasts 366
 - 7/8/2 Out-of-sample forecasting 370
 - 7/8/3 The effect of differencing on forecasts 371
 - 7/8/4 ARIMA models used in time series decomposition 372
 - 7/8/5 Equivalances with exponential smoothing models 373

References and selected bibliography 374

Exercises 377

- 8 / ADVANCED FORECASTING MODELS 388
- 8/1 Regression with ARIMA errors 390
 - 8/1/1 Modeling procedure 391
 - 8/1/2 Example: Japanese motor vehicle production 393
 - 8/1/3 Example: Sales of petroleum and coal products 396
 - 8/1/4 Forecasting 400
- 8/2 Dynamic regression models 403
 - 8/2/1 Lagged explanatory variables 403
 - 8/2/2 Koyck model 406
 - 8/2/3 The basic forms of the dynamic regression model 407
 8/2/4 Selecting the model order 409
 8/2/5 Forecasting 413
 8/2/6 Example: Housing starts 415
- 8/3 Intervention analysis 418
 - 8/3/1 Step-based interventions 419
 8/3/2 Pulse-based interventions 421
 8/3/3 Further reading 422
 8/3/4 Intervention models and forecasting 423
- 8/4 Multivariate autoregressive models 423
- 8/5 State space models 429
 - 8/5/1 Some forecasting models in state space form 429
 - 8/S/2 State space forecasting 431
 - 8/5/3 The value of state space models 433
- 8/6 Non-linear models 433
- 8/7 Neural network forecasting 435

References and selected bibliography 440 Exercises 444

9 / FORECASTING THE LONG-TERM 451

- 9/1 Cycles versus long-term trends: forecasting copper prices 452
 9/1/1 Forecasting IBM's sales 457
- 9/2 Long-term mega economic trends 459
 - 9/2/I Cycles of various durations and depths 461
 - 9/2/2 Implications of extrapolating long-term trends 464
- 9/3 Analogies 466
 - 9/3/1 The Information versus the Industrial Revolution 467
 - 9/3/2 Five major inventions of the Industrial Revolution and their analogs 469
- 9/4 Scenario building 472
 - 9/4/1 Businesses: gaining and/or maintaining competitive advantages 472
 - 9/4/2 Jobs, work, and leisure time 475
 - 9/4/3 Physical versus tele-interactions: extent and speed of acceptance 476

References and selected bibliography 478

Exercises 480

IO / JUDGMENTAL FORECASTING AND ADJUSTMENTS 482

10/1 The accuracy of judgmental forecasts 483

IO/I/I The accuracy of forecasts in financial and other markets 484
IO/I/2 Non-investment type forecasts 490

10/2 The nature of judgmental biases and limitations 492

10/2/1 Judgmental biases in forecasting 493 10/2/2 Dealing with judgmental biases 496 10/2/3 Conventional wisdom 502

- 10/3Combining statistical and
judgmental forecasts50310/3/1Arriving at final forecasts during
a budget meeting503
- 10/4 Conclusion 508

References and selected bibliography 509

Exercises 512

II / THE USE OF FORECASTING METHODS IN PRACTICE 514

- II/I Surveys among forecasting users 515
 - IV/VI Familiarity and satisfaction with major forecasting methods 516
 - IVV2 The use of different forecasting methods 520
- 11/2 Post-sample accuracy: empirical findings 525
- II/3 Factors influencing method selection 532
- II/4 The combination of forecasts 537
 II/4/I Factors that contribute to making combining work 538
 II/4/2 An example of combining 539

References and selected bibliography 543 Exercises 547

12 / IMPLEMENTING FORECASTING: ITS USES, ADVANTAGES, AND LIMITATIONS 549

- 12/I What can and cannot be predicted 551
 12/I/I Short-term predictions 553
 12/I/2 Medium-term predictions 554
 12/I/3 Long-term predictions 557
- 12/2 Organizational aspects of forecasting 558
 12/2/1 Correcting an organization's forecasting problems 561
 12/2/2 Types of forecasting problems and their solutions 562
- 12/3 Extrapolative predictions versus creative insights 567
 12/3/1 Hindsight versus foresight *569
- 12/4 Forecasting in the future 571 12/4/1 Data, information, and forecasts 571
 - 12/4/2 Collective knowledge, experience, and forecasting 572

References and selected bibliography 575

Exercises 576

APPENDIX I / FORECASTING RESOURCES 577

I Forecasting software 578 VI Spreadsheets 578

- I/2 Statistics packages 578
- 1/3 Specialty forecasting packages 579
- 1/4 Selecting a forecasting package 582
- 2 Forecasting associations 583
- 3 Forecasting conferences 585
- 4 Forecasting journals and newsletters 585
- 5 Forecasting on the Internet 586

References and selected bibliography 588

APPENDIX II / GLOSSARY OF FORECASTING TERMS 589

APPENDIX III / STATISTICAL TABLES 549

- A: Normal probabilities 620
- B: Critical values for *t*-statistic 621
- C: Critical values for *F*-statistic 622
- D: Inverse normal table 628
- E: Critical values for χ^2 statistic 629
- F: Values of the Durbin-Watson statistic 630
- G: Normally distributed observations 632

AUTHOR INDEX 633

SUBJECT INDEX 636