
Clean Code
A Handbook of Agile

Software Craftsmanship

The Object Mentors:
Robert C. Martin

Michael C. Feathers Timothy R. Ottinger
Jeffrey J. Langr Brett L. Schuchert

James W. Grenning Kevin Dean Wampler
Object Mentor Inc.

Writing clean code is what you must do in order to call yourself a professional.
There is no reasonttbk-excuseioj-datnYWtypm^lHslhan your best.

Technische Universrtaf EjarrriSiacit y

FACHBEREiCH iNFORfv!AT!K

B I B L I O T H E K

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid
P R H ALLC E C a P e t o w n * Sydney • Tokyo • Singapore • Mexico City

Contents

Foreword xix

Introduction xxv

On the Cover xxix

Chapter 1: Clean Code 1
There Will Be Code 2
Bad Code 3
The Total Cost of Owning a Mess 4

The Grand Redesign in the Sky 5
Attitude 5
The Primal Conundrum 6
The Art of Clean Code? 6
What Is Clean Code? 7

Schools of Thought 12
We Are Authors 13
The Boy Scout Rule 14
Prequel and Principles 15
Conclusion .: 15
Bibliography 15

Chapter 2: Meaningful Names 17
Introduction 17
Use Intention-Revealing Names 18
Avoid Disinformation... ; 19
Make Meaningful Distinctions 20
Use Pronounceable Names 21
Use Searchable Names 22

Vll

viii Contents

Avoid Encodings 23
Hungarian Notation 23
Member Prefixes 24
Interfaces and Implementations 24

Avoid Mental Mapping 25
Class Names 25
Method Names 25
Don't Be Cute 26
Pick One Word per Concept 26
Don't Pun 26
Use Solution Domain Names 27
Use Problem Domain Names 27
Add Meaningful Context 27
Don't Add Gratuitous Context 29
Final Words 30

Chapter 3: Functions 31
Small! 34

Blocks and Indenting 35
Do One Thing 35

Sections within Functions 36
One Level of Abstraction per Function 36

Reading Code from Top to Bottom: The Stepdown Rule 37
Switch Statements 37
Use Descriptive Names 39
Function Arguments 40

Common Monadic Forms 41
Flag Arguments 41
Dyadic Functions 42
Triads 42
Argument Objects 43
Argument Lists 43
Verbs and Keywords 43

Have No Side Effects 44
Output Arguments 45

Command Query Separation 45

Contents ix

Prefer Exceptions to Returning Error Codes 46
Extract Try/Catch Blocks 46
Error Handling Is One Thing 47
The Error. Java Dependency Magnet 47

Don't Repeat Yourself 48
Structured Programming 48
How Do You Write Functions Like This? 49
Conclusion 49
SetupTeardownlncluder 50
Bibliography 52

Chapter 4: Comments 53
Comments Do Not Make Up for Bad Code 55
Explain Yourself in Code 55
Good Comments 55

Legal Comments 55
Informative Comments 56
Explanation of Intent 56
Clarification 57
Warning of Consequences 58
TODO Comments 58
Amplification 59
Javadocs in Public APIs 59

Bad Comments 59
Mumbling 59
Redundant Comments 60
Misleading Comments 63
Mandated Comments 63
Journal Comments 63
Noise Comments 64
Scary Noise 66
Don't Use a Comment When You Can Use a
Function or a Variable 67
Position Markers 67
Closing Brace Comments 67
Attributions and Bylines 68

Contents

Commented-Out Code 68
HTML Comments 69
Nonlocal Information 69
Too Much Information 70
Inobvious Connection 70
Function Headers 70
Javadocs inNonpublic Code 71
Example 71

Bibliography 74

Chapter 5: Formatting 75
The Purpose of Formatting 76
Vertical Formatting 76

The Newspaper Metaphor 77
Vertical Openness Between Concepts 78
Vertical Density 79
Vertical Distance 80
Vertical Ordering 84

Horizontal Formatting 85
Horizontal Openness and Density 86
Horizontal Alignment 87
Indentation 88
Dummy Scopes 90

Team Rules 90
Uncle Bob's Formatting Rules... 90

Chapter 6: Objects and Data Structures 93
Data Abstraction 93
Data/Object Anti-Symmetry 95
The Law of Demeter 97

Train Wrecks 98
Hybrids 99
Hiding Structure 99

Data Transfer Objects 100
Active Record 101

Conclusion 101
Bibliography 101

Contents xi

Chapter 7: Error Handling 103
Use Exceptions Rather Than Return Codes 104
Write Your Try-Catch-Finally Statement First 105
Use Unchecked Exceptions 106
Provide Context with Exceptions 107
Define Exception Classes in Terms of a Caller's Needs 107
Define the Normal Flow 109
Don't Return Null 110
Don't Pass Null I l l
Conclusion 112
Bibliography 112

Chapter 8: Boundaries 113
Using Third-Party Code 114
Exploring and Learning Boundaries 116
Learning Iog4j 116
Learning Tests Are Better Than Free 118
Using Code That Does Not Yet Exist 118
Clean Boundaries 120
Bibliography 120

Chapter 9: Unit Tests 121
The Three Laws of TDD 122
Keeping Tests Clean 123

Tests Enable the -ilities 124
Clean Tests 124

Domain-Specific Testing Language 127
A Dual Standard 127

One Assert per Test 130
Single Concept per Test 131

EI.R.S.T 132
Conclusion 133
Bibliography 133

Chapter 10: Classes 135
Class Organization 136

Encapsulation 136

xii Contents

Classes Should Be Small! 136
The Single Responsibility Principle 138
Cohesion 140
Maintaining Cohesion Results in Many Small Classes 141

Organizing for Change 147
Isolating from Change 149

Bibliography 151

Chapter 11: Systems 153
How Would You Build a City? 154
Separate Constructing a System from Using It 154

Separation of Main 155
Factories 155
Dependency Injection 157

Scaling Up 157
Cross-Cutting Concerns 160

Java Proxies 161
Pure Java AOP Frameworks 163
AspectJ Aspects 166
Test Drive the System Architecture 166
Optimize Decision Making 167
Use Standards Wisely, When They Add Demonstrable Value 168
Systems Need Domain-Specific Languages 168
Conclusion : 169
Bibliography 169

Chapter 12: Emergence 171
Getting Clean via Emergent Design 171
Simple Design Rule 1: Runs All the Tests 172
Simple Design Rules 2-4: Refactoring 172
No Duplication 173
Expressive 175
Minimal Classes and Methods 176
Conclusion 176
Bibliography 176

Chapter 13: Concurrency 177
Why Concurrency? 178

Myths and Misconceptions 179

Contents xiii

Challenges 180
Concurrency Defense Principles 180

Single Responsibility Principle 181
Corollary: Limit the Scope of Data : 181
Corollary: Use Copies of Data 181
Corollary: Threads Should Be as Independent as Possible 182

Know Your Library 182
Thread-Safe Collections 182

Know Your Execution Models 183
Producer-Consumer 184
Readers-Writers 184
Dining Philosophers 184

Beware Dependencies Between Synchronized Methods 185
Keep Synchronized Sections Small 185
Writing Correct Shut-Down Code Is Hard 186
Testing Threaded Code 186

Treat Spurious Failures as Candidate Threading Issues 187
Get Your Nonthreaded Code Working First 187
Make Your Threaded Code Pluggable 187
Make Your Threaded Code Tunable 187
Run with More Threads Than Processors 188
Run on Different Platforms 188
Instrument Your Code to Try and Force Failures 188
Hand-Coded .,...189
Automated 189

Conclusion 190
Bibliography 191

Chapter 14: Successive Refinement 193
Args Implementation 194

How Did I Do This? 200
Args: The Rough Draft 201

So I Stopped 212
On Incrementalism 212

String Arguments 214
Conclusion 250

xiv Contents

Chapter 15: JUnit Internals 251
The JUnit Framework 252
Conclusion 265

Chapter 16: Refactoring SerialDate 267
First, Make It Work 268
Then Make It Right 270
Conclusion 284
Bibliography 284

Chapter 17: Smells and Heuristics 285
Comments 286

Cl: Inappropriate Information 286
C2:Obsolete Comment 286
C3: Redundant Comment 286
C4: Poorly Written Comment 287

• C5: Commented-Out Code 287
Environment 287

El: Build Requires More Than One Step 287
E2: Tests Require More Than One Step 287

Functions 288
Fl: Too Many Arguments 288
F2: Output Arguments 288
F3: Flag Arguments : 288
F-4: Dead Function 288

General 288
Gl: Multiple Languages in One Source File 288
G2: Obvious Behavior Is Unimplemented 288
G3: Incorrect Behavior at the Boundaries 289
G4: Overridden Safeties 289
G5: Duplication 289
G6: Code at Wrong Level of Abstraction 290
G7: Base Classes Depending on Their Derivatives 291
G8: Too Much Information 291
G9: Dead Code 292
G10: Vertical Separation 292
Gi l : Inconsistency 292
G12: Clutter 293

Contents

G13: Artificial Coupling 293
G14: Feature Envy 293
G15: Selector Arguments 294
G16: Obscured Intent 295
G17: Misplaced Responsibility 295
G18: Inappropriate Static 296
G19: Use Explanatory Variables 296
G20: Function Names Should Say What They Do 297
G21: Understand the Algorithm 297
G22: Make Logical Dependencies Physical 298
G23: Prefer Polymorphism to If/Else or Switch/Case 299
G24: Follow Standard Conventions 299
G25: Replace Magic Numbers with Named Constants 300
G26: Be Precise 301
G27: Structure over Convention 301
G28: Encapsulate Conditionals 301
G29: Avoid Negative Conditionals 302
G30: Functions Should Do One Thing 302
G31: Hidden Temporal Couplings 302
Gil: Don't Be Arbitrary 303
G33: Encapsulate Boundary Conditions 304
G34: Functions Should Descend Only
One Level of Abstraction 304
G35: Keep Configurable Data at High Levels 306
G36: Avoid Transitive Navigation 306

Java 307
Jl: Avoid Long Import Lists by Using Wildcards 307
J2: Don't Inherit Constants 307
J3: Constants versus Enums 308

Names 309
Nl: Choose Descriptive Names 309
N2: Choose Names at the Appropriate Level of Abstraction 311
N3: Use Standard Nomenclature Where Possible 311
N4: Unambiguous Names 312
N5: Use Long Names for Long Scopes 312
N6: Avoid Encodings 312
N7: Names Should Describe Side-Effects 313

Contents

Tests 313
Tl: Insufficient Tests 313
T2: Use a Coverage Tool! 313
T3: Don't Skip Trivial Tests 313
T'4: An Ignored Test Is a Question about an Ambiguity 313
T5: Test Boundary Conditions 314
T6: Exhaustively Test Near Bugs 314
T7: Patterns of Failure Are Revealing 314
T8: Test Coverage Patterns Can Be Revealing 314
T9: Tests Should Be Fast 314

Conclusion 314
Bibliography 315

Appendix A: Concurrency II 317
Client/Server Example 317

The Server 317
Adding Threading 319
Server Observations 319
Conclusion 321

Possible Paths of Execution 321
Number of Paths 322
Digging Deeper 323
Conclusion 326

Knowing Your Library 326
Executor Framework 326
Nonblocking Solutions 327
Nonthread-Safe Classes 328

Dependencies Between Methods
Can Break Concurrent Code 329

Tolerate the Failure 330
Client-Based Locking 330
Server-Based Locking 332

Increasing Throughput 333
Single-Thread Calculation of Throughput 334
Multi thread Calculation of Throughput 335

Deadlock ...335
Mutual Exclusion 336
Lock & Wait 337

Contents xvii

No Preemption 337
Circular Wait 337
Breaking Mutual Exclusion 337
Breaking Lock & Wait 338
Breaking Preemption 338
Breaking Circular Wait 338

Testing Multithreaded Code 339
Tool Support for Testing Thread-Based Code 342
Conclusion 342
Tutorial: Full Code Examples 343

Client/Server Nonthreaded 343
Client/Server Using Threads 346

Appendix B: org.jfree.date.SerialDate 349

Appendix C: Cross References of Heuristics 409

Epilogue 411

Index 413

