
Practical Programmlng^Second Edition
An Introduction to Computer Science Using python 3

Paul Gries
Jennifer Campbell

Jason Montojo

The Pragmatic Rookshelf
Dallas, Texas • Raleigh, North Carolina

Contents

Acknowledgments xi

Preface xiii

1. What's Programming? 1
1.1 Programs and Programming 2
1.2 What's a Programming Language? 3
1.3 What's a Bug? 4
1.4 The Difference Between Brackets, Braces, and

Parentheses 5
1.5 Installing Python 5

2. Hello, Python 7
2.1 How Does a Computer Run a Python Program? 7
2.2 Expressions and Values: Arithmetic in Python 9
2.3 What Is a Type? 12
2.4 Variables and Computer Memory: Remembering Values 15
2.5 How Python Tells You Something Went Wrong 22
2.6 A Single Statement That Spans Multiple Lines 23
2.7 Describing Code 25
2.8 Making Code Readable 26
2.9 The Object of This Chapter 27
2.10 Exercises 27

3. Designing and Using Functions 31
3.1 Functions That Python Provides 31
3.2 Memory Addresses: How Python Keeps Track of Values 34
3.3 Defining Our Own Functions 35
3.4 Using Local Variables for Temporary Storage 39
3.5 Tracing Function Calls in the Memory Model 40
3.6 Designing New Functions: A Recipe 47
3.7 Writing and Running a Program 59

Contents • vi

3.8 Omitting a Return Statement: None 60
3.9 Dealing with Situations That Your Code Doesn't Handle 61
3.10 What Did You Call That? 62
3.11 Exercises 63

4. Working with Text 65
4.1 Creating Strings of Characters 65
4.2 Using Special Characters in Strings 68
4.3 Creating a Multiline String 70
4.4 Printing Information 70
4.5 Getting Information from the Keyboard 73
4.6 Quotes About Strings in This Text 74
4.7 Exercises 75

5. Making Choices 77
5.1 A Boolean Type 77
5.2 Choosing Which Statements to Execute 86
5.3 Nested If Statements 92
5.4 Remembering the Results of a Boolean Expression

Evaluation 92
5.5 You Learned About Booleans: True or False? 94
5.6 Exercises 94

6. A Modular Approach to Program Organization 99
6.1 Importing Modules 100
6.2 Defining Your Own Modules 104
6.3 Testing Your Code Semiautomatically 109
6.4 Tips for Grouping Your Functions 112
6.5 Organizing Our Thoughts 113
6.6 Exercises 114

7. Using Methods 115
7.1 Modules, Classes, and Methods 115
7.2 Calling Methods the Object-Oriented Way 117
7.3 Exploring String Methods 119
7.4 What Are Those Underscores? 123
7.5 A Methodical Review 125
7.6 Exercises 125

8. Storing Collections of Data Using Lists 129
8.1 Storing and Accessing Data in Lists 129
8.2 Modifying Lists 133

Contents • vii

8.3 Operations on Lists 134
8.4 Slicing Lists » 137
8.5 Aliasing: What's in a Name? 138
8.6 List Methods 140
8.7 Working with a List of Lists 142
8.8 A Summary List 144
8.9 Exercises 144

9. Repeating Code Using Loops 147
9.1 Processing Items in a List 147
9.2 Processing Characters in Strings 149
9.3 Looping Over a Range of Numbers 150
9.4 Processing Lists Using Indices 152
9.5 Nesting Loops in Loops 154
9.6 Looping Until a Condition Is Reached 158
9.7 Repetition Based on User Input 161
9.8 Controlling Loops Using Break and Continue 161
9.9 Repeating What You've Learned 165
9.10 Exercises 166

10. Reading and Writing Files 171
10.1 What Kinds of Files Are There? 171
10.2 Opening a File 173
10.3 Techniques for Reading Files 176
10.4 Files over the Internet 181
10.5 Writing Files 182
10.6 Writing Algorithms That Use the File-Reading

Techniques 183
10.7 Multiline Records 191
10.8 Looking Ahead 194
10.9 Notes to File Away 196
10.10 Exercises 197

11. Storing Data Using Other Collection Types 199
11.1 Storing Data Using Sets 199
11.2 Storing Data Using Tuples 204
11.3 Storing Data Using Dictionaries 209
11.4 Inverting a Dictionary 216
11.5 Using the In Operator on Tuples, Sets, and Dictionaries 217
11.6 Comparing Collections 218

Contents • viii

11.7 A Collection of New Information 218
11.8 Exercises * 219

12. Designing Algorithms 223
12.1 Searching for the Smallest Values 224
12.2 Timing the Functions 232
12.3 At a Minimum, You Saw This 234
12.4 Exercises 234

13. Searching and Sorting 237
13.1 Searching a List 237
13.2 Binary Search 245
13.3 Sorting 249
13.4 More Efficient Sorting Algorithms 259
13.5 Mergesort: A Faster Sorting Algorithm 261
13.6 Sorting Out What You Learned 265
13.7 Exercises 266

14. Object-Oriented Programming 269
14.1 Understanding a Problem Domain 270
14.2 Function "Isinstance," Class Object, and Class Book 271
14.3 Writing a Method in Class Book 274
14.4 Plugging into Python Syntax: More Special Methods 280
14.5 A Little Bit of OO Theory 282
14.6 A Case Study: Molecules, Atoms, and PDB Files 288
14.7 Classifying What You've Learned 292
14.8 Exercises 293

15. Testing and Debugging 297
15.1 Why Do You Need to Test? 297
15.2 Case Study: Testing above_freezing 298
15.3 Case Study: Testing running_sum 304
15.4 Choosing Test Cases 310
15.5 Hunting Bugs 311
15.6 Bugs We've Put in Your Ear 312
15.7 Exercises 312

16. Creating Graphical User Interfaces 317
16.1 Using Module Tkinter 317
16.2 Building a Basic GUI 319

, 16.3 Models, Views, and Controllers, Oh My! 323
16.4 Customizing the Visual Style 327

Contents • ix

16.5 Introducing a Few More Widgets 332
16.6 Object-Oriented GUIs • 335
16.7 Keeping the Concepts from Being a GUI Mess 336
16.8 Exercises 336

17. Databases 339
17.1 Overview 339
17.2 Creating and Populating 340
17.3 Retrieving Data 344
17.4 Updating and Deleting 347
17.5 Using NULL for Missing Data 348
17.6 Using Joins to Combine Tables 349
17.7 Keys and Constraints 353
17.8 Advanced Features 354
17.9 Some Data Based On What You Learned 360
17.10 Exercises 361

Bibliography 365

Index 367

