Hierarchical Linear Models Applications and Data Analysis Methods

Second Edition

Stephen W. Raudenbush Anthony S. Bryk

Advanced Quantitative Techniques in the Social Sciences Series

Contents

Acknowledgments for the Second Edition	xvii
Series Editor's Introduction to Hierarchical Linear Models	xix
Series Editor's Introduction to the Second Edition	xxiii
Introduction	3
Hierarchical Data Structure: A Common Phenomenon	3
Persistent Dilemmas in the Analysis of Hierarchical Data	5
A Brief History of the Development of Statistical Theory for	
Hierarchical Models	5
Early Applications of Hierarchical Linear Models	
Improved Estimation of Individual Effects	7
Modeling Cross-Level Effects	8
Partitioning Variance-Covariance Components	9
New Developments Since the First Edition	10
An Expanded Range of Outcome Variables	10
Incorporating Cross-Classified Data Structures	11
Multivariale Model	12
Latent Variable Models	13
Bayesian Inference	13
Organization of the Book	14

2.	The Logic of Hierarchical Linear Models	16
	Preliminaries	16
	A Study of the SES-Achievement Relationship in One School	16
	A Study of the SES-Achievement Relationship in Two	
	Schools	18
	A Study of the SES-Achievement Relationship in J Schools	'18
	A General Model and Simpler Submodels	23
	One-Way ANOVA with Random Effects	23
	Means-as-Outcomes Regression	24
	One-Way ANCOVA with Random Effects	25
	Random-Coefficients Regression Model	26
	Intercepts- and Slopes-as-Outcomes	27
	A Model with Nonrandomlx Va?ying Slopes	28
	Section Recap	28
	Generalizations of the Basic Hierarchical Linear Model	29
	Multiple Xs and Multiple Ws	29
	Generalization of the Error Structures at Level I and	
	Level 2	30
	Extensions Beyond the Basic Two-Level Hierarchical	
	Linear Model	31
	Choosing the Location of X and W (Centering)	31
	Location of the Xs	32
	Location of Ws	35
	Summary of Terms and Notation Introduced in This Chapter	35
	A Simple Two-Level Model	35
	Notation and Terminology Summary	36
	Some Definitions	36
	Submodel Types	36
	Centering Definitions	37
	Implications for $p_{(j)}$	37
3.	Principles of Estimation and Hypothesis Testing for	
	Hierarchical Linear Models	38
	Estimation Theory t	38
	Estimation of Fixed Effects	38
	Estimation of Random Level-1 Coefficients	45
	Estimation of Variance and Covariance Components	51
	Hypothesis Testing	56
	Hypothesis Tests for Fixed Effects	57
	Hypothesis Tests for Random Level-1 Coefficients	61

	Hypothesis Testing for Variance and Covariance	
	Components	63
	Summary of Terms Introduced in This Chapter	65
4.	An Illustration	68
	Introduction	68
	The One-Way ANOVA	69
	The Model	69
	Results	70
	Regression with Means-as-Outcomes	72
	The Model	' 72
	Results	73
	The Random-Coefficient Model	75
	The Model	75
	Results	77
	An Intercepts- and Slopes-as-Outcomes Model	80
	The Model	80
	Results	81
	Estimating the Level-1 Coefficients for a Particular Unit	85
	Ordinary Least Squares	86
	Unconditional Shrinkage	87
	Conditional Shrinkage	90
	Comparison of Interval Estimates	92
	Cautionary Note	94
	Summary of Terms Introduced in This Chapter	94
5.	Applications in Organizational Research	99
	Background Issues in Research on Organizational Effects	99
	Formulating Models	100
	Person-Level Model (Level I)	100
	Organization-Level Model (Level 2)	101
	Case 1: Modeling the Common Effects of Organizations via	
	Random-Intercept Models	102
	A Simple Random-Intercept Model	102
	Example: Examining School Effects on Teacher Efficacy	103
	Comparison of Results with Conventional Teacher-Level	
	and School-Level Analyses	107
	A Random-Intercept Model with Level-1 Covariates	111
	Example: Evaluating Program Effects on Writing	112
	Comparison of Results with Conventional Student- and	
	Classroom-Level Analyses	113

Case 2: Explaining the Differentiating Effects of	
Organizations via Intercepts- and Slopes-as-Outcomes	
Models	117
Difficulties Encountered in Past Efforts at Modeling	
Regression Slopes-as-Outcomes	117
Example: The Social Distribution of Achievement in Public	;
and Catholic High Schools	119
Applications with Both Random and Fixed Level-1 Slopes	129
Special Topics	130
Applications with Heterogeneous Level-1 Variance	131
Example: Modeling Sector Effects on the Level-1 Residual	
Variance in Mathematics Achievement	131
Data-Analytic Advice About the Presence of Heterogeneity	,
at Level I	132
Centering Level-1 Predictors in Organizational Effects	
Applications	134
Estimating Fixed Level-1 Coefficients	135
Disentangling Person-Level and Compositional Effects	139
Estimating Level-2 Effects While Adjusting for Level-1	
Covariates •	142
Estimating the Variances of Level-1 Coefficients	143
Estimating Random Level-] Coefficients	149
Use of Proportion Reduction in Variance Statistics	149
Estimating the Effects of Individual Organizations	152
Conceptualization of Organization Specific Effects	152
Commonly Used Estimates of School Performance	152
Use of Empirical Bayes Estimators	153
Threats to Valid Inference Regarding Performance	
Indicators	154
Power Considerations in Designing Two-Level Organization	
Effects Studies	158
Applications in the Study of Individual Change	160
Background Issues in Research on Individual Change	160
Formulating Models	161
Repeated-Observations Model (Level I)	162
Person-Level Model (Level 2) •	162
A Linear Growth Model	163
Example: The Effect of Instruction on Cognitive Growth	164
A Quadratic Growth Model	169

6.

	Example: The Effects of Maternal Speech on Children's	
	Vocabulary	170
	Some Other Growth Models	176
	More Complex Level-l Error Structures	$\setminus 11$
	Piecewise Linear Growth Models	178
	Time-Varying Covariates	179
	Centering of Level-1 Predictors in Studies of Individual	
	Change	181
	Definition of the Intercept in Linear Growth Models	181
	Definitions of Other Growth Parameters in Higher-Order	
	Polynomial Models	182
	Possible Biases in Studying Time-Varying Covariates	183
	Estimation of the Variance of Growth Parameters	183
	Comparison of Hierarchical, Multivariate Repeated-Measures,	
	and Structural Equation Models	185
	Multivariate Repeated-Measures (MRM) Model	185
	Structural Equation Models (SEM)	186
	Case I: Observed Data are Balanced	188
	Case 2: Complete Data are Balanced	189
	Case 3: Complete Data are Unbalanced	196
	Effects of Missing Observations at Level 1	199
	Using a Hierarchical Model to Predict Future Status	200
	Power Considerations in Designing Studies of Growth and	
	Change	202
7.	Applications in Meta-Analysis and	
	Other Cases where Level-1 Variances are Known	205
	Introduction	205
	The Hierarchical Structure of Meta-Analytic Data	206
	Extensions to Other Level-l "Variance-Known" Problems	207
	Organization of This Chapter	207
	Formulating Models for Meta-Analysis	208
	Standardized Mean Differences	208
	Level-I (Within-Studies) Model	209
	Level-2 (Between-Studies) Model	209
	Combined Model	210
	Estimation	210
	Example: The Effect of Teacher Expectancy on Pupil IQ	210
	Unconditional Analysis	212
	Conditional Analysis	213
	Bavesian Meta-Analvsis	217

	Other Level-1 Variance-Known Problems	217
	Example: Correlates of Diversity	219
	The Multivariate V-Known Model	222
	Level-1 Model •	222
	Level-2 Model	223
	Meta-Analysis of Incomplete Multivariate Data	224
	Level-l Model	224
	Level-2 Model	225
	Illustrative Example .	225
8.	Three-Level Models	228
	Formulating and Testing Three-Level Models	228
	A Fully Unconditional Model	228
	Conditional Models	231
	Many Alternative Modeling Possibilities	233
	Hypothesis Testing in the Three-Level Model	234
	Example: Research on Teaching	235
	Studying Individual Change Within Organizations	237
	Unconditional Model	238
	Conditional Model	241
	Measurement Models at Level 1	245
	Example: Research on School Climate	245
	Example: Research on School-Based Professional	
	Community and the Factors That Facilitate It	248
	Estimating Random Coefficients in Three-Level Models	250
~		
9.	Assessing the Adequacy of Hierarchical Models	252
	Introduction	252
	Thinking about Model Assumptions	253
	Organization of the Chapter	253
	Key Assumptions of a Two-Level Hierarchical Linear Model	254
	Building the Level-1 Model	256
	Empirical Methods to Guide Model Building at Level I	257
	Specification Issues at Level I	259
	Examining Assumptions about Level-/ Random Effects	263
	Building the Level-2 Model	267
	Empirical Methods to Guide Model Building at Level 2	268
	Specification Issues at Level 2	271
	Examining Assumptions about Level-2 Random Effects	273
	Robust Standard Errors	276
	Illustration	279
	Validity of Inferences when Samples are Small	280

	Inferences about the Fixed Effects	281
	Inferences about the Variance Components	283
	Inferences about Random Level-] Coefficients	284
	Appendix	285
	Misspecification of the Level-! Structural Model	285
	Level-1 Predictors Measured with Error	286
10.	Hierarchical Generalized Linear Models,	291
	The Two-Level HLM as a Special Case of HGLM	293
	Level-1 Sampling Model	293
	Level-1 Link Function	293
	Level-] Structural Model	294
	Two- and Three-Level Models for Binary Outcomes	294
	Level-] Sampling Model	294
	Level-I Link Function	295
	Level-1 Structural Model	295
	Level-2 and Level-3 Models	296
	A Bernoulli Example: Grade Retention in Thailand	296
	Population-Average Models	301
	A Binomial Example: Course Failures During First	
	Semester of Ninth Grade	304
	Hierarchical Models for Count Data	309
	Level-! Sampling Model •	309
	Level-1 Link Function	310
	Level-I Structural Model	310
	Level-2 Model	310
	Example: Homicide Rates in Chicago Neighborhoods	311
	Hierarchical Models for Ordinal Data	317
	The Cumulative Probability Model for Single-Level Data	317
	Extension to Two Levels	321
	An Example: Teacher Control and Teacher Commitment	322
	Hierarchical Models for Multinomial Data	325
	Level-! Sampling Model	326
	Level-1 Link Function	326
	Level-] Structural Model	327
	Level-2 Model	327
	Illustrative Example: Postsecondary Destinations	327
	Estimation Considerations in Hierarchical Generalized Linear	
	Models	332
	Summary of Terms Introduced in This Chapter	333
11.	Hierarchical Models for Latent Variables	336

	Regression with Missing Data	338
	Multiple Model-Based Imputation	338
	Applying HLM to the Missing Data Problem	339
	Regression when Predictors are Measured with Error	346
	Incorporating Information about Measurement Error in	
	Hierarchical Models	347
	Regression with Missing Data and Measurement Errors	351
	Estimating Direct and Indirect Effects of Latent Variables	351
	A Three-Level Illustrative Example with Measurement	
	Error and Missing Data	352
	The Model	354
	A Two-Level Latent Variable Example for Individual	
	Growth	361
	Nonlinear Item Response Models	365
	A Simple Item Response Model	365
	An Item Response Model for Multiple Traits	368
	Two-Parameter Models .	370
	Summary of Terms Introduced in This Chapter	371
	Missing Data Problems	371
	Measurement Error Problems	371
12.	Models for Cross-Classified Random Effects	373
	Formulating and Testing Models for Cross-Classified Random	
	Effects	376
	Unconditional Model	376
	Conditional Models	379
	Example I: Neighborhood and School Effects on Educational	
	Attainment in Scotland	384
	Unconditional Model	385
	Conditional Model	387
	Estimating a Random Effect of Social Deprivation	389
	Example 2: Classroom Effects on Children's Cognitive	
	Growth During the Primary Years	389
	Summary	396
	Summary of Terms Introduced in This Chapter	396
13.	Bayesian Inference for Hierarchical Models	399
	An Introduction to Bayesian Inference	400
	Classical View	401
	Bayesian View	401
	Example: Inferences for a Normal Mean	402
	Classical Approach	402

	Bayesian Approach Some Generalizations and Inferential Concerns	403 406
	A Bayesian Perspective on Inference in Hierarchical Linear	+00
	Models	408
	Full Maximum Likelihood (ML) of y, T, and cr^2	408
	REML Estimation of T and a^2	410
	The Basics of Bayesian Inference for the Two-Level HLM	412
	Model for the Observed Data	412
	Stage-! Prior	412
	Stage-2 Prior	413
	Posterior Distributions	413
	Relationship Between Fully Bayes and Empirical Bayes	
	Inference	413
	Example: Bayes Versus Empirical Bayes Meta-Analysis	414
	Bayes Model	415
	Parameter Estimation and Inference	416
	A Comparison Between Fully Bayes and Empirical Bayes	
	Inference	420
	Gibbs Sampling and Other Computational Approaches	427
	Application of the Gibbs Sampler to Vocabulary Growth	
	Data	428
	Summary of Terms Introduced in This Chapter	432
14.	Estimation Theory	436
	Models, Estimators, and Algorithms	436
	Overview of Estimation via ML and Bayes	438
	ML Estimation	438
	Bayesian Inference	439
	ML Estimation for Two-Level HLMs	440
	ML Estimation via EM	440
	The Model	440
	M Step	441
	E Step	442
	Putting the Pieces Together	443
	ML Estimation for HLM via Fisher Scoring	444
	Application of Fisher-IGLS to Two-Level ML	445
	ML Estimation for the Hierarchical Multivariate Linear	
	Model (HMLM)	450
	The Model	450
	EM Algorithm	451
	Fisher-IGLS Algorithm	451

Estimation of Alternative Covariance Structures		452
Discussion		454
Estimation for Hierarchical Generalized Linear Models		454
Numerical Integration for Hierarchical Models		456
Application to Two-Level Data with Binary Outcomes		457
Penalized Quasi-Likelihood		457
Closer Approximations to ML	•	459
Representing the Integral as a Laplace Transform		460
Application of Laplace to Two-Level Binary Data		462
Generalizations to other Level-l Models		463
Summary and Conclusions		465
References		467
Index		477
About the Authors		485