

Operations Research

APPLICATIONS

AND ALGORITHMS

FOURTH EDITION

Wayne L. Winston

INDIANA UNIVERSITY

WITH CASES BY Jeffrey B. Goldberg UNIVERSITY OF ARIZONA

Breek, New Yolden Thinking Lenting 17 Bayer Driv. Belanksi, CA 9402 1,854

Contents

Preface xii About the Author xvi

1 An Introduction to Model-Building 1

- 1.1 An Introduction to Modeling 1
- **1.2** The Seven-Step Model-Building Process 5
- 1.3 CITGO Petroleum 6
- 1.4 San Francisco Police Department Scheduling 7
- 1.5 GE Capital 9

2 Basic Linear Algebra 11

- 2.1 Matrices and Vectors 11
- 2.2 Matrices and Systems of Linear Equations 20
- **2.3** The Gauss-Jordan Method for Solving Systems of Linear Equations 22
- 2.4 Linear Independence and Linear Dependence 32
- **2.5** The Inverse of a Matrix 36
- 2.6 Determinants 42

3 Introduction to Linear Programming **49**

- **3.1** What Is a Linear Programming Problem? 49
- **3.2** The Graphical Solution of Two-Variable Linear Programming Problems 56

- 3.3 Special Cases 63
- **3.4** A Diet Problem 68
- **3.5** A Work-Scheduling Problem 72
- **3.6** A Capital Budgeting Problem 76
- 3.7 Short-Term Financial Planning 82
- 3.8 Blending Problems 85
- **3.9** Production Process Models 95
- **3.10** Using Linear Programming to Solve Multiperiod Decision Problems: An Inventory Model 100
- 3.11 Multiperiod Financial Models 105
- 3.12 Multiperiod Work Scheduling 109

4 The Simplex Algorithm and Goal Programming 127

- **4.1** How to Convert an LP to Standard Form 127
- **4.2** Preview of the Simplex Algorithm 130
- 4.3 Direction of Unboundedness 134
- **4.4** Why Does an LP Have an Optimal bfs? 136
- 4.5 The Simplex Algorithm 140
- **4.6** Using the Simplex Algorithm to Solve Minimization Problems 149
- 4.7 Alternative Optimal Solutions 152
- 4.8 Unbounded LPs 154
- 4.9 The LINDO Computer Package 158
- **4.10** Matrix Generators, LINGO, and Scaling of LPs 163
- **4.11** Degeneracy and the Convergence of the Simplex Algorithm 168
- **4.12** The Big M Method 172

- 4.13 The Two-Phase Simplex Method 178
- 4.14 Unrestricted-in-Sign Variables 184
- **4.15** Karmarkar's Method for Solving LPs 190
- **4.16** Multiattribute Decision Making in the Absence of Uncertainty: Goal Programming 191
- 4.17 Using the Excel Solver to Solve LPs 202

5 Sensitivity Analysis: An Applied Approach **227**

- **5.1** A Graphical Introduction to Sensitivity Analysis 227
- **5.2** The Computer and Sensitivity Analysis 232
- 5.3 Managerial Use of Shadow Prices 246
- 5.4 What Happens to the Optimal z-Value If the Current Basis Is No Longer Optimal? 248

6 Sensitivity Analysis and Duality 262

- **6.1** A Graphical Introduction to Sensitivity Analysis 262
- 6.2 Some Important Formulas 267
- 6.3 Sensitivity Analysis 275
- 6.4 Sensitivity Analysis When More Than One Parameter Is Changed: The 100% Rule 289
- 6.5 Finding the Dual of an LP 295
- **6.6** Economic Interpretation of the Dual Problem 302
- **6.7** The Dual Theorem and Its Consequences 304
- 6.8 Shadow Prices 313
- 6.9 Duality and Sensitivity Analysis 323
- 6.10 Complementary Slackness 325
- 6.11 The Dual Simplex Method 329
- 6.12 Data Envelopment Analysis 335

7 Transportation, Assignment, and Transshipment Problems 360

- 7.1 Formulating Transportation Problems 360
- **7.2** Finding Basic Feasible Solutions for Transportation Problems 373
- 7.3 The Transportation Simplex Method 382
- 7.4 Sensitivity Analysis for Transportation Problems 390
- 7.5 Assignment Problems 393
- 7.6 Transshipment Problems 400

8 Network Models 413

- **8.1** Basic Definitions 413
- 8.2 Shortest-Path Problems 414
- 8.3 Maximum-Flow Problems 419
- 8.4 CPM and PERT 431
- 8.5 Minimum-Cost Network Flow Problems 450
- 8.6 Minimum Spanning Tree Problems 456
- 8.7 The Network Simplex Method 459

9 Integer Programming 475

- 9.1 Introduction to Integer Programming 475
- **9.2** Formulating Integer Programming Problems 477
- **9.3** The Branch-and-Bound Method for Solving Pure Integer Programming Problems 512
- **9.4** The Branch-and-Bound Method for Solving Mixed Integer Programming Problems 523
- **9.5** Solving Knapsack Problems by the Branch-and-Bound Method 524
- **9.6** Solving Combinatorial Optimization Problems by the Branch-and-Bound Method 527
- 9.7 Implicit Enumeration 540
- 9.8 The Cutting Plane Algorithm 545

10 Advanced Topics in Linear Programming 562

- 10.1 The Revised Simplex Algorithm 562
- **10.2** The Product Form of the Inverse 567
- **10.3** Using Column Generation to Solve Large-Scale LPs 570
- **10.4** The Dantzig-Wolfe Decomposition Algorithm 576
- **10.5** The Simplex Method for Upper-Bounded Variables 593
- **10.6** Karmarkar's Method for Solving LPs 597

11 Nonlinear Programming **610**

- 11.1 Review of Differential Calculus 610
- 11.2 Introductory Concepts 616
- **11.3** Convex and Concave Functions 630
- **11.4** Solving NLPs with One Variable 637
- **11.5** Golden Section Search 649
- **11.6** Unconstrained Maximization and Minimization with Several Variables 655
- 11.7 The Method of Steepest Ascent 660
- 11.8 Lagrange Multipliers 663
- 11.9 The Kuhn–Tucker Conditions 670
- **11.10** Quadratic Programming 680
- 11.11 Separable Programming 688
- 11.12 The Method of Feasible Directions 693
- **11.13** Pareto Optimality and Tradeoff Curves 695

12 Review of Calculus and Probability 707

- 12.1 Review of Integral Calculus 707
- **12.2** Differentiation of Integrals 710
- **12.3** Basic Rules of Probability 710
- 12.4 Bayes' Rule 713
- **12.5** Random Variables, Mean, Variance, and Covariance 715
- **12.6** The Normal Distribution 722
- **12.7** *z*-Transforms 730

13 Decision Making under Uncertainty 737

- 13.1 Decision Criteria 737
- **13.2** Utility Theory 741
- **13.3** Flaws in Expected Maximization of Utility: Prospect Theory and Framing Effects 755
- 13.4 Decision Trees 758
- **13.5** Bayes' Rule and Decision Trees 767
- **13.6** Decision Making with Multiple Objectives 773
- **13.7** The Analytic Hierarchy Process 785

14 Game Theory 803

- **14.1** Two-Person Zero-Sum and Constant-Sum Games: Saddle Points 803
- 14.2 Two-Person Zero-Sum Games: Randomized Strategies, Domination, and Graphical Solution 807
- **14.3** Linear Programming and Zero-Sum Games 816
- 14.4 Two-Person Nonconstant-Sum Games 827
- **14.5** Introduction to *n*-Person Game Theory 832
- **14.6** The Core of an *n*-Person Game 834
- 14.7 The Shapley Value 837

15 Deterministic EOQ Inventory Models 846

- **15.1** Introduction to Basic Inventory Models 846
- **15.2** The Basic Economic Order Quantity Model 848
- **15.3** Computing the Optimal Order Quantity When Quantity Discounts Are Allowed 859
- **15.4** The Continuous Rate EOQ Model 865
- **15.5** The EOQ Model with Back Orders Allowed 868

- **15.6** When to Use EOQ Models 872
- **15.7** Multiple-Product EOQ Models 873

16 Probabilistic Inventory Models **880**

- 16.1 Single-Period Decision Models 880
- **16.2** The Concept of Marginal Analysis 880
- **16.3** The News Vendor Problem: Discrete Demand 881
- **16.4** The News Vendor Problem: Continuous Demand 886
- 16.5 Other One-Period Models 888
- **16.6** The EOQ with Uncertain Demand: The (r, q) and (s, S) Models 890
- 16.7 The EOQ with Uncertain Demand: The Service Level Approach to Determining Safety Stock Level 898
- **16.8** (*R*, *S*) Periodic Review Policy 907
- **16.9** The ABC Inventory Classification System 911
- 16.10 Exchange Curves 913

17 Markov Chains 923

- 17.1 What Is a Stochastic Process? 923
- 17.2 What Is a Markov Chain? 924
- **17.3** *n*-Step Transition Probabilities 928
- **17.4** Classification of States in a Markov Chain 931
- 17.5 Steady-State Probabilities and Mean First Passage Times 934
- **17.6** Absorbing Chains 942
- **17.7** Work-Force Planning Models 950

18 Deterministic Dynamic Programming 961

- **18.1** Two Puzzles 961
- **18.2** A Network Problem 962
- **18.3** An Inventory Problem 969
- **18.4** Resource-Allocation Problems 974
- **18.5** Equipment-Replacement Problems 985

- 18.6 Formulating Dynamic Programming Recursions 989
- **18.7** The Wagner–Whitin Algorithm and the Silver–Meal Heuristic 1001
- 18.8 Using Excel to Solve Dynamic Programming Problems 1006

19 Probabilistic Dynamic Programming 1016

- 19.1 When Current Stage Costs Are Uncertain, but the Next Period's State Is Certain 1016
- **19.2** A Probabilistic Inventory Model 1019
- **19.3** How to Maximize the Probability of a Favorable Event Occurring 1023
- **19.4** Further Examples of Probabilistic Dynamic Programming Formulations 1029
- **19.5** Markov Decision Processes 1036

20 Queuing Theory 1051

- **20.1** Some Queuing Terminology 1051
- **20.2** Modeling Arrival and Service Processes 1053
- **20.3** Birth–Death Processes 1053
- **20.4** The $M/M/1/GD/\infty/\infty$ Queuing System and the Queuing Formula $L = \lambda W 1072$
- **20.5** The $M/M/1/GD/c/\infty$ Queuing System 1083
- **20.6** The $M/M/s/GD/\infty/\infty$ Queuing System 1087
- **20.7** The $M/G/\infty/GD/\infty/\infty$ and $GI/G/\infty/GD/\infty/\infty$ Models 1095
- **20.8** The $M/G/1/GD/\infty/\infty$ Queuing System 1097
- **20.9** Finite Source Models: The Machine Repair Model 1099
- **20.10** Exponential Queues in Series and Open Queuing Networks 1104
- **20.11** The *M/G/s/GD/s/∞* System (Blocked Customers Cleared) 1112
- **20.12** How to Tell Whether Interarrival Times and Service Times Are Exponential 1115
- **20.13** Closed Queuing Networks 1119

- **20.14** An Approximation for the G/G/mQueuing System 1124
- 20.15 Priority Queuing Models 1126
- 20.16 Transient Behavior of Queuing Systems 1131

21 Simulation 1145

- **21.1** Basic Terminology 1145
- **21.2** An Example of a Discrete-Event Simulation 1146
- **21.3** Random Numbers and Monte Carlo Simulation 1153
- **21.4** An Example of Monte Carlo Simulation 1158
- **21.5** Simulations with Continuous Random Variables 1162
- **21.6** An Example of a Stochastic Simulation 1173
- 21.7 Statistical Analysis in Simulations 1180
- 21.8 Simulation Languages 1183
- 21.9 The Simulation Process 1184

22 Simulation with Process Model 1191

- **22.1** Simulating an *M/M/*1 Queuing System 1191
- **22.2** Simulating an *M/M/2* System 1195
- 22.3 Simulating a Series System 1199
- **22.4** Simulating Open Queuing Networks 1203
- **22.5** Simulating Erlang Service Times 1207
- **22.6** What Else Can Process Model Do? 1210

23 Simulation with the Excel Add-in @Risk 1212

- **23.1** Introduction to @Risk: The News Vendor Problem 1212
- **23.2** Modeling Cash Flows from a New Product 1222
- **23.3** Product Scheduling Models 1232
- **23.4** Reliability and Warranty Modeling 1238

- 23.5 The RISKGENERAL Function 1244
- **23.6** The RISKCUMULATIVE Random Variable 1248
- 23.7 The RISKTRIGEN Random Variable 1249
- **23.8** Creating a Distribution Based on a Point Forecast 1250
- **23.9** Forecasting the Income of a Major Corporation 1252
- **23.10** Using Data to Obtain Inputs for New Product Simulations 1256
- **23.11** Simulation and Bidding 1267
- 23.12 Playing Craps with @Risk 1269
- 23.13 Simulating the NBA Finals 1271

24 Forecasting Models 1275

- 24.1 Moving-Average Forecast Methods 1275
- 24.2 Simple Exponential Smoothing 1281
- **24.3** Holt's Method: Exponential Smoothing with Trend 1283
- **24.4** Winter's Method: Exponential Smoothing with Seasonality 1286
- **24.5** Ad Hoc Forecasting 1292
- **24.6** Simple Linear Regression 1302
- **24.7** Fitting Nonlinear Relationships 1312
- **24.8** Multiple Regression 1317

Appendix 1: @Risk Crib Sheet 1336

Appendix 2: Cases 1350

- Case 1 Help, I'm Not Getting Any Younger 1351
- Case 2 Solar Energy for Your Home 1351
- **Case 3** Golf-Sport: Managing Operations 1352
- **Case 4** Vision Corporation: Production Planning and Shipping 1355
- Case 5Material Handling in a General
Mail-Handling Facility 1356
- Case 6 Selecting Corporate Training Programs 1359

Case 7	Best Chip: Expansion Strategy 1362
Case 8	Emergency Vehicle Location in Springfield 1364
Case 9	System Design: Project Management 1365
Case 10	Modular Design for the Help-You Company 1366
Case 11	Brite Power: Capacity Expansion 1368

Appendix 3: Answers to Selected Problems 1370

Index 1402

xi