The Mathematics of Arbitrage

UNIVERSITAT LIECHTENSTEIN Bibliothek

Contents

Part I A Guided Tour to Arbitrage Theory

1	The	e Story in a Nutshell	3
	1.1	Arbitrage	3
	1.2	An Easy Model of a Financial -Market.	. 4
	1.3	Pricing by No-Arbitrage.	. 5
	1.4	Variations of the Example,	7
*	1.5	Martingale Measures	7
	1.6	The Fundamental Theorem of Asset Pricing	8
2	Mo	dels of Financial Markets on Finite Probability Spaces .	11
	2.1	Description of the Model	.11
	2.2	No-Arbitrage and the Fundamental Theorem of Asset Pricing.	16
	2.3	Equivalence of Single-period with Multiperiod Arbitrage	22
	2.4	Pricing by No-Arbitrage	23
	2.5	Change of Numeraire	.27
	2.6	Kramkov's Optional Decomposition Theorem	.31
3	Uti	lity Maximisation on Finite Probability Spaces	.33
	3.1	The Complete Case:	.34
	3.2	The Incomplete Case	. 41
	3.3	The Binomial and the Trinomial Model	.45
4	Bac	chelier and Black-Scholes	.57
	4.1	Introduction to Continuous Time Models	
	4.2	Models in Continuous Time	
	4.3	Bachelier's Model	
	11	The Black-Scholes Model	

XIV Contents

5	The	Kreps-Yan Theorem	7	
	5.1	A General Framework.	7	
	5.2	No Free Lunch'	.76	
6	The	Dalang-Morton-Willinger Theorem	85	
	6.1	Statement of the Theorem	. 85	
	6.2	The Predictable Range	. 86	
	6.3	The Selection Principle		
	6.4	The Closedness of the Cone C	92	
	6.5	Proof of the Dalang-Morton-Willinger Theorem for $T = 1 \dots$		
	6.6	A Utility-based Proof of the DMW Theorem for $T = 1$. 96	
	6.7	Proof of the Dalang-Morton-Willinger Theorem for $T > 1$		
		by Induction on T		
	6.'8	Proof of the Closedness of K in the Case $T > 1$.103	
	6.9	Proof of the Closedness of C in the Case $T > 1$		
		under the.(NA) Condition	105	
	6.10	Proof of the Dalang-Morton-Willinger Theorem for $T > 1$		
		using the Closedness of C		
	6.11	Interpretation of the $L^{\circ\circ}\text{-Bound}$ in the DMW Theorem	.108	
7	A Primer in Stochastic Integration			
	7.1	The Set-up		
	7.2	Introductory on Stochastic Processes.		
	7.3	Strategies, Semi-martingales and Stochastic Integration.	.117	
8	Arb	itrage Theory in Continuous Time: an Overview	.129	
	8.1	Notation and Preliminaries		
	8.2	The Crucial Lemma	.13	
	8.3	Sigma-martingales and the Non-locally Bounded Case	.140	
Par	t II	The Original Papers		
9	A (General Version of the Fundamental Theorem		
	of A	sset Pricing (1994)"	.149	
	9.1	Introduction		
	9.2	Definitions and Preliminary Results.	155	
	9.3	No Free Lunch with Vanishing Risk		
	9.4	Proof of the Main Theorem	164	
	9.5	The Set of Representing Measures	18	
	9.6	No Free Lunch with Bounded Risk	186	
	9.7	Simple Integrands		
	9.8	Appendix: Some Measure Theoretical Lemmas	.202	

	Contents	XV
10	A Simple Counter-Example to Several Problems in the Theory of Asset Pricing (1998). 10.1 Introduction and Known Results. 10.2 Construction of the Example. 10.3 Incomplete Markets.	207 210
11	The No-Arbitrage Property under a Change of Numeraire (1995). 11.1 Introduction. 11.2 Basic Theorems. 11.3 Duality Relation. 11.4 Hedging and Change of Numeraire.	217 219 222
12	The Existence of Absolutely Continuous Local Martingale Measures (1995). 12.1 Introduction. 12.2 The Predictable Radon-Nikodym Derivative. 12.3 The No-Arbitrage Property and Immediate Arbitrage. 12.4 The Existence of an Absolutely Continuous Local Martingale Measure7	231 235 239
13	The Banach Space of Workable Contingent Claims in Arbitrage Theory (1997). 13.1 Introduction 13.2 Maximal Admissible Contingent Claims. 13.3 The Banach Space Generated by Maximal Contingent Claims. 13.4 Some Results on the Topology of <i>Q</i> . 13.5 The Value of Maximal Admissible Contingent Claims on the Set <i>M</i> ^e . 13.6 The Space <i>Q</i> under a Numeraire Change. 13.7 The Closure of <i>Q</i> °° and Related Problems.	251 255 261 266 272 274
14	The Fundamental Theorem of Asset Pricing for Unbounded Stochastic Processes (1998). 14.1 Introduction ". '.' 14.2 Sigma-martingales. 14.3 One-period Processes. 14.4 The General Revalued Case. 14.5 Duality Results and Maximal Elements.	279 280 284 294
15	A Compactness Principle for Bounded Sequences of Martingales with Applications (1999). 15.1 Introduction,	319

XVI Contents

15.3	An Example	332			
15.4	A Substitute of Compactness				
	for Bounded Subsets of H^l	334			
	15.4.1 Proof of Theorem 15.A	335			
	15.4.2 Proof of Theorem 15.C.	337			
	15.4.3 Proof of Theorem 15.B.	339			
	15.4.4 A proof of M. Yor's Theorem	345			
	15.4.5 Proof of Theorem 15.D.	346			
15.5	Application	352			
Part III	Bibliography				
i ait iii	Dionogi apny				
References					