

Computational Methods for Option Pricing

Yves Achdou Universite Denis Diderot Paris, France

Olivier Pironneau Universite Pierre et Marie Curie Institut Universitaire de France Paris, France

Society for Industrial and Applied Mathematics Philadelphia

Contents

List	of Algorithms	xiii
Prefa	ce	XV
1	Option Pricing	1
	1.1 Orientation.	1
	1.2 A Brief Introduction to Options.	1
	1.3 Constant Coefficients. The Black-Scholes Formula	6
	1.4 Monte-Carlo Methods.	8
	1.5 Other Options	15
	1.6 Complement: Binomial Trees	17
2	The Black-Scholes Equation: Mathematical Analysis	23
	2.1 Orientation	. 23
	2.2 The Partial Differential Equation	. 24
	2.3 Mathematical Analysis of the Black-Scholes Equation	
	with Local Volatility.	. 27
	2.4 Barrier Options	43
	2.5 LeVy Driven Assets.	44
	2.6 Options on a Basket of Assets	. 46
	2.7 Stochastic Volatility.	. 48
3	Finite Differences	57
	3.1 Finite Differences in Logarithmic Prices	.57
	3.2 Upwinding	
	3.3 Finite Differences in the Primitive Variables	76
	3.4 Numerical Results.	81
	3.5 Which Variable Is Better?	83
	3.6 Options on a Basket of Two Assets.	
	3.7 An Asian Put with Fixed Strike	.85
4	The Finite Element Method	95
	4.1 Orientation	95
	4.2 A Generic Problem	96
	4.3 The Black-Scholes Equation with Local Volatility.	.104

Contents

4.4	A Black-Scholes Equation Solver in C++	.107
4.5	A Transparent Boundary Condition	.110
4.6	Levy Driven Assets	
4.7	Programs for Two-Dimensional Cases.	
4.8	Programming in Dimension $d > 2$.	
4.9	High Dimensions: An Introduction to Galerkin Methods	
	with Sparse Tensor Product Spaces.	.142
4.10	Appendix: The Full Program for Two-Dimensional Black-Scholes	
Ada	ptive Mesh Refinement	151
5.1	The Black-Scholes Equation and Some Discretizations	
5.2	Error Indicators for the Black-Scholes Equation	
5.3	Conclusion	
5.4	A Taste of the Software	
5.5	Results.	
5.6	Mesh Adaption for a Put on a Basket of Two Assets.	
5.0 5.7	Appendix: Proofs	
5.7		.1/4
Am	erican Options	185
6.1	Introduction	
6.2	The Variational Inequality	.186
6.3	The Exercise Boundary.	
6.4	Discrete Approximations to the Variational Inequality	
6.5	Solution Procedures.	.198
6.6	Results	208
6.7	More Complex American Options.	.209
Sen	sitivities and Calibration	219
7.1	Introduction.	219
7.2	Automatic Differentiation of Computer Programs.	219
7.3	Computation of Greeks	
7.4	An Introduction to the Calibration of Volatility	228
7.5	Finite-Dimensional Differentiable Optimization	230
7.6	Application: Calibration on a Basis of Solutions	
7.7	Appendix.	.236
Cal	ibration of Local Volatility with European Options	243
8.1	The Least Squares Problem.	
8.2	Which Space for <i>rj</i> and Which Tychonoff Functional?	245
8.3	Existence of a Minimizer	247
8.4	The Gradient of J.	248
8.5	The Discrete Problem	249
8.6	A Taste of the Program.	251
8.7	Results.	254
8.8	A Stochastic Control Approach	257
0.0		251

Contents

9	Cali	ibration of Local Volatility with American Options	263	
ç	9.1	The Calibration Problem.	.263	
ç	9.2	A Penalized Problem	.265	
ç	9.3	Necessary Optimality Conditions	.268	
ç	9.4	Differentiability.	.274	
(9.5	Algorithm	.275	
Ģ	9.6	Results.	.277	
Bibliography				
Index			295	