MARIA C. GRANT DOUGLAS FISHER Reading and Writing Sin in interval Sin interval Si

TOOLS TO DEVELOP DISCIPLINARY LITERACY

KS£3S M UNIVERSITAT ^ '^^LIECHTENSTEIN Bibliothek

Contents

Preface	vii
Acknowledgments About the Authors	xi xiii
Learning Is Based in Language	2
Using Language in Science	5
Chapter 2: Developing and Activating	
Background Knowledge	7
Why Background Knowledge Is Important	8
Determining Relevant Background Knowledge	10
Demonstrations: Understanding While Seeing	10
Anticipation Guides: Looking for Misconceptions	12
KWL: Using Knowledge to Generate Questions	13
Writing to Learn: Thinking Expressed Through the Fingers	15
Activating and Assessing Background Knowledge in Science	16
Bridging the Gap When Background Knowledge Is Scant	17
ReQuest: Teaching Apprentices to Question	17
DR-TA: Predicting as a Key to Scientific Reading	19
QAR: Connecting Questions With Answers	20
The Background Knowledge Big Picture	23
Chapter 3: Integrating Vocabulary Instruction	
Into the Science Classroom	25
The Importance of Vocabulary	25
Vocabulary Self-Awareness Charts -	27
Content Area Word Walls	28
Instructional Routines Useful for Developing Vocabulary Semantic Feature Analysis: Assessing	28
Relationships Between Words	29

Word Cards: Investigating Examples and Nonexamples	34
Semantic Mapping: Visualizing Word Relationships	36
Fostering Independent Word Learning in Science	38
Word Play Promotes Increased Vocabulary Knowledge	41
Vocabulary Helps Students Understand Science	42
Chapter 4: Reading Science Texts	45
Helping Students Read Science Texts	45
Read-Alouds Support Student Learning	46
Shared Reading Defined and Implemented	51
The Benefits of Shared Reading	52
Releasing Responsibility to Students	53
Facilitating Collaborative Learning	54
ReQuest: Reading With Questions	54
Reciprocal Teaching: Practicing What Good Readers Do	56
Incorporating Independent Practice	58
Why Teach Reading in Science?	59
Chapter 5: Writing in Science: Scaffolding Skills	
for Science Students	61
Writing Like a Scientist Is Different	62
WebOuest: Collecting Data to Write	63
Writing Frames: Scaffolds for Scientific Writing	64
Teaching Scientific Phrasing	66
Writing Formats in Science	68
Why Learn to Write Like a Scientist?	71
Chapter 6: Assessing Student Learning in Science	73
The Purpose of Assessment in Science	73
Using Assessment Information	76
Identifying Specific Students' Needs	78
Creating Science Assessments	82
Types of Assessments Useful in Science	85
Final Thoughts About Assessment	89
References	91
Index	97