Econometric Analysis of Cross Section and Panel Data

Second Edition

Jeffrey M. Wooldridge

The MIT Press Cambridge, Massachusetts London, England

Contents

	Preface	xxi	
	Acknowledgments	xxix	
I	INTRODUCTION AND BACKGROUND	1	
1	Introduction	3	
1. 1	Causal Relationships and Ceteris Paribus Analysis	3	
1.2	Stochastic Setting and Asymptotic Analysis	4	
	1.2.1 Data Structures	4	
	1.2.2 Asymptotic Analysis	7	
1.3	Some Examples	7	
1.4	Why Not Fixed Explanatory Variables?	9	
2	Conditional Expectations and Related Concepts in Econometrics	13	
2.1	Role of Conditional Expectations in Econometrics	13	
2.2	Features of Conditional Expectations	14	
	2.2.1 Definition and Examples	14	
	2.2.2 Partial Effects, Elasticities, and Semielasticities	15	
	2.2.3 Error Form of Models of Conditional Expectations	18	
	2.2.4 Some Properties of Conditional Expectations	19	
	2.2.5 Average Partial Effects	22	
2.3	Linear Projections	25	
	Problems	27	
	Appendix 2A	30	
	2.A.I Properties of Conditional Expectations	30	
	2.A.2 Properties of Conditional Variances and Covariances	32	
	2.A.3 Properties of Linear Projections	34	
3	Basic Asymptotic Theory	37	
3.1	Convergence of Deterministic Sequences	37	
3.2	Convergence in Probability and Boundedness in Probability	38	
3.3	Convergence in Distribution	40	
3.4	Limit Theorems for Random Samples	41	
3.5	Limiting Behavior of Estimators and Test Statistics	42	
	3.5.1 Asymptotic Properties of Estimators	42	
	3.5.2 Asymptotic Properties of Test Statistics	45	
	Problems		

II	LINE	AR MODELS	51
4	Single Estima	-Equation Linear Model and Ordinary Least Squares	53
4.1			
4.1 4.2		riew of the Single-Equation Linear Model	53 55
4.2	4.2.1	ptotic Properties of Ordinary Least Squares Consistency	56
	4.2.1	Asymptotic Inference Using Ordinary Least Squares	59
	4.2.3	Heteroskedasticity-Robust Inference	60
	4.2.4	Lagrange Multiplier (Score) Tests	62
4.3		ary Least Squares Solutions to the Omitted Variables Problem	65
т.Э	4.3.1	Ordinary Least Squares Ignoring the Omitted Variables	65
	4.3.2	Proxy Variable-Ordinary Least Squares Solution	67
	4.3.3	Models with Interactions in Unobservables: Random	07
	1.5.5	Coefficient Models	73
4.4	Prope	rties of Ordinary Least Squares under Measurement Error	76
	4.4.1	Measurement Error in the Dependent Variable	76
	4.4.2	Measurement Error in an Explanatory Variable	78
	Proble		82
5	Instru	mental Variables Estimation of Single-Equation Linear Models	89
5.1	Instru	mental Variables and Two-Stage Least Squares	89
	5.1.1	Motivation for Instrumental Variables Estimation	89
	5.1.2	Multiple Instruments: Two-Stage Least Squares	96
5.2	Gener	ral Treatment of Two-Stage Least Squares	98
	5.2.1	Consistency	98
	5.2.2	Asymptotic Normality of Two-Stage Least Squares	101
	5.2.3	Asymptotic Efficiency of Two-Stage Least Squares	103
	5.2.4	Hypothesis Testing with Two-Stage Least Squares	104
	5.2.5	Heteroskedasticity-Robust Inference for Two-Stage Least	
		Squares	106
	5.2.6	Potential Pitfalls with Two-Stage Least Squares	107
5.3		plutions to the Omitted Variables and Measurement Error	
	Proble		112
	5.3.1	Leaving the Omitted Factors in the Error Term	112
	5.3.2	Solutions Using Indicators of the Unobservables	112
	Proble	ems	115

Contents vii

6	Additi	ional Single-Equation Topics	123
6.1	Estim	ation with Generated Regressors and Instruments	123
	6.1.1	Ordinary Least Squares with Generated Regressors	123
	6.1.2	Two-Stage Least Squares with Generated Instruments	124
	6.1.3	Generated Instruments and Regressors	125
6.2	Contr	ol Function Approach to Endogeneity	126
6.3	Some	Specification Tests	129
	6.3.1	Testing for Endogeneity	129
	6.3.2	Testing Overidentifying Restrictions	134
	6.3.3	Testing Functional Form	137
	6.3.4	Testing for Heteroskedasticity	138
6.4	Corre	lated Random Coefficient Models	141
	6.4.1	When Is the Usual IV Estimator Consistent?	142
	6.4.2	Control Function Approach	145
6.5	Poole	d Cross Sections and Difference-in-Differences Estimation	146
	6.5.1	Pooled Cross Sections over Time	146
	6.5.2	Policy Analysis and Difference-in-Differences Estimation	147
	Proble	ems	152
	Apper	ndix 6A	157
7	Estima	ating Systems of Equations by Ordinary Least Squares and	
	Gener	alized Least Squares	161
7.1	Introd	luction	161
7.2	Some	Examples	161
7.3	Syste	m Ordinary Least Squares Estimation of a Multivariate Linear	
	System	n	166
	7.3.1	Preliminaries	166
	7.3.2	Asymptotic Properties of System Ordinary Least Squares	167
	7.3.3	Testing Multiple Hypotheses	172
7.4	Consi	stency and Asymptotic Normality of Generalized Least Squares	173
	7.4.1	Consistency	173
	7.4.2	Asymptotic Normality	175
7.5	Feasil	ole Generalized Least Squares	176
	7.5.1	Asymptotic Properties	176
	7.5.2	Asymptotic Variance of Feasible Generalized Least Squares	
		under a Standard Assumption	180

viii Contents

	7.5.3	(Possibly Incorrect) Restrictions on the Unconditional	
		Variance Matrix	182
7.6	Tostir	ng the Use of Feasible Generalized Least Squares	183
7.0 7.7		ingly Unrelated Regressions, Revisited	185
1.1	7.7.1	Comparison between Ordinary Least Squares and Feasible	165
	7.7.1	Generalized Least Squares for Seemingly Unrelated	
		Regressions Systems	185
	7.7.2	Systems with Cross Equation Restrictions	188
	7.7.3	Singular Variance Matrices in Seemingly Unrelated	100
	7.7.5	Regressions Systems	189
7.8	Linea	r Panel Data Model, Revisited	191
	7.8.1	Assumptions for Pooled Ordinary Least Squares	191
	7.8.2	Dynamic Completeness	194
	7.8.3	Note on Time Series Persistence	196
	7.8.4	Robust Asymptotic Variance Matrix	197
	7.8.5	Testing for Serial Correlation and Heteroskedasticity after	
		Pooled Ordinary Least Squares	198
	7.8.6	Feasible Generalized Least Squares Estimation under Strict	
		Exogeneity	200
	Proble	ems	202
8	Syster	n Estimation by Instrumental Variables	207
8.1	Introd	duction and Examples	207
8.2	Gene	ral Linear System of Equations	210
8.3	Gene	ralized Method of Moments Estimation	213
	8.3.1	General Weighting Matrix	213
	8.3.2	System Two-Stage Least Squares Estimator	216
	8.3.3	Optimal Weighting Matrix	217
	8.3.4	The Generalized Method of Moments Three-Stage Least	
		Squares Estimator	219
8.4	Gener	ralized Instrumental Variables Estimator	222
	8.4.1	Derivation of the Generalized Instrumental Variables	
		Estimator and Its Asymptotic Properties	222
	8.4.2	Comparison of Generalized Method of Moment,	
		Generalized Instrumental Variables, and the Traditional	
		Three-Stage Least Squares Estimator	224

Contents

8.5	Testin	g Using Generalized Method of Moments	226
	8.5.1	Testing Classical Hypotheses	226
	8.5.2	Testing Overidentification Restrictions	228
8.6	More	Efficient Estimation and Optimal Instruments	229
8.7	Summ	nary Comments on Choosing an Estimator	232
	Proble	ems	233
9	Simult	taneous Equations Models	239
9.1	Scope	of Simultaneous Equations Models	239
9.2	Identi	fication in a Linear System	241
	9.2.1	Exclusion Restrictions and Reduced Forms	241
	9.2.2	General Linear Restrictions and Structural Equations	245
	9.2.3	Unidentified, Just Identified, and Overidentified Equations	251
9.3	Estim	ation after Identification	252
	9.3.1	Robustness-Efficiency Trade-off	252
	9.3.2	When Are 2SLS and 3SLS Equivalent?	254
	9.3.3	Estimating the Reduced Form Parameters	255
9.4	Additi	ional Topics in Linear Simultaneous Equations Methods	256
	9.4.1	Using Cross Equation Restrictions to Achieve Identification	256
	9.4.2	Using Covariance Restrictions to Achieve Identification	257
	9.4.3	Subtleties Concerning Identification and Efficiency in Linear	
		Systems	260
9.5	Simul	taneous Equations Models Nonlinear in Endogenous	
	Variab		262
	9.5.1	Identification	262
		Estimation •	266
	9.5.3	Control Function Estimation for Triangular Systems	268
9.6		ent Instruments for Different Equations	271
	Proble	ems	273
10	Basic	Linear Unobserved Effects Panel Data Models	281
10.1	Motiv	ation: Omitted Variables Problem	281
10.2	Assur	nptions about the Unobserved Effects and Explanatory	
	Variat	oles	285
	10.2.1	Random or Fixed Effects?	285
	10.2.2	Strict Exogeneity Assumptions on the Explanatory Variables	287
	10.2.3	Some Examples of Unobserved Effects Panel Data Models	289

10.3	Estima	ting Unobserved Effects Models by Pooled Ordinary Least	
	Square	S	291
10.4	Rando	m Effects Methods	291
	10.4.1	Estimation and Inference under the Basic Random Effects	
		Assumptions	291
	10.4.2	Robust Variance Matrix Estimator	297
	10.4.3	General Feasible Generalized Least Squares Analysis	298
	10.4.4	Testing for the Presence of an Unobserved Effect	299
10.5	Fixed 1	Effects Methods	300
	10.5.1	Consistency of the Fixed Effects Estimator	300
	10.5.2	Asymptotic Inference with Fixed Effects	304
	10.5.3	Dummy Variable Regression	307
	10.5.4	Serial Correlation and the Robust Variance Matrix	
		Estimator	310
	10.5.5	Fixed Effects Generalized Least Squares	312
	10.5.6	Using Fixed Effects Estimation for Policy Analysis	315
10.6	First D	Differencing Methods	315
	10.6.1	Inference	315
	10.6.2	Robust Variance Matrix	318
	10.6.3	Testing for Serial Correlation	319
	10.6.4	Policy Analysis Using First Differencing	320
10.7	Compa	arison of Estimators	321
	10.7.1	Fixed Effects versus First Differencing	321
	10.7.2	Relationship between the Random Effects and Fixed	
		Effects Estimators	326
	10.7.3	Hausman Test Comparing Random Effects and Fixed	
		Effects Estimators	328
	Probler	ms	334
11	More 7	Topics in Linear Unobserved Effects Models	345
11.1	Genera	alized Method of Moments Approaches to the Standard	
	Linear	Unobserved Effects Model	345
	11.1.1	Equivalance between GMM 3SLS and Standard Estimators	345
	11.1.2	Chamberlain's Approach to Unobserved Effects Models	34′
11.2	Rando	m and Fixed Effects Instrumental Variables Methods	349
11.3	Hausm	nan and Taylor-Type Models	358
11.4	First D	Differencing Instrumental Variables Methods	36

Contents xi

11.5	Unobs	erved Effects Models with Measurement Error	365
11.6	Estima	tion under Sequential Exogeneity	368
	11.6.1	General Framework	368
	11.6.2	Models with Lagged Dependent Variables	371
11.7	Model	s with Individual-Specific Slopes	374
	11.7.1	Random Trend Model	375
	11.7.2	General Models with Individual-Specific Slopes	377
	11.7.3	Robustness of Standard Fixed Effects Methods	382
	11.7.4	Testing for Correlated Random Slopes	384
	Problei	ms	387
Ш	GENE	RAL APPROACHES TO NONLINEAR ESTIMATION	395
12	M-Esti	mation, Nonlinear Regression, and Quantile Regression	397
12.1	Introdu	action	397
12.2	Identif	ication, Uniform Convergence, and Consistency	401
12.3	Asymp	ototic Normality	405
12.4	Two-S	tep M-Estimators	409
	12.4.1	Consistency	410
	12.4.2	Asymptotic Normality	411
12.5	Estima	ting the Asymptotic Variance	413
	12.5.1	Estimation without Nuisance Parameters	413
	12.5.2	Adjustments for Two-Step Estimation	418
12.6	Hypoth	nesis Testing	420
	12.6.1	Wald Tests	420
	12.6.2	Score (or Lagrange Multiplier) Tests	421
	12.6.3	Tests Based on the Change in the Objective Function	428
	12.6.4	Behavior of the Statistics under Alternatives	430
12.7	Optimi	ization Methods	431
	12.7.1	Newton-Raphson Method	432
	12.7.2	Berndt, Hall, Hall, and Hausman Algorithm	433
	12.7.3	Generalized Gauss-Newton Method	434
	12.7.4	Concentrating Parameters out of the Objective Function	435
12.8	Simula	ation and Resampling Methods	436
	.12.8.1	Monte Carlo Simulation	436
	12.8.2	Bootstrapping	438

12.9	Multivariate Nonlinear Regression Methods	442
	12.9.1 Multivariate Nonlinear Least Squares	442
	12.9.2 Weighted Multivariate Nonlinear Least Squares	444
12.10	Quantile Estimation .	449
	12.10.1 Quantiles, the Estimation Problem, and Consistency	449
	12.10.2 Asymptotic Inference	454
	12.10.3 Quantile Regression for Panel Data	459
	Problems	462
13	Maximum Likelihood Methods	469
13.1	Introduction	469
13.2	Preliminaries and Examples	470
13.3	General Framework for Conditional Maximum Likelihood	
	Estimation	473
13.4	Consistency of Conditional Maximum Likelihood Estimation	475
13.5	Asymptotic Normality and Asymptotic Variance Estimation	476
	13.5.1 Asymptotic Normality	476
	13.5.2 Estimating the Asymptotic Variance	479
13.6	Hypothesis Testing	481
13.7	Specification Testing	482
13.8	Partial (or Pooled) Likelihood Methods for Panel Data	485
	13.8.1 Setup for Panel Data	486
	13.8.2 Asymptotic Inference	490
	13.8.3 Inference with Dynamically Complete Models	492
13.9	Panel Data Models with Unobserved Effects	494
	13.9.1 Models with Strictly Exogenous Explanatory Variables	494
	13.9.2 Models with Lagged Dependent Variables	497
13.10	Two-Step Estimators Involving Maximum Likelihood	499
	13.10.1 Second-Step Estimator Is Maximum Likelihood Estimator	499
	13.10.2 Surprising Efficiency Result When the First-Step	
	Estimator Is Conditional Maximum Likelihood Estimator	500
13.11	Quasi-Maximum Likelihood Estimation	502
	13.11.1 General Misspecification	502
	13.11.2 Model Selection Tests	505
	13.11.3 Quasi-Maximum Likelihood Estimation in the Linear	
	Exponential Family	509

	13.11.4 Generalized Estimating Equations for Panel Data	514
	Problems	517
	Appendix 13A	522
14	Generalized Method of Moments and Minimum Distance Estima	ation 525
14.1	Asymptotic Properties of Generalized Method of Moments	525
14.2	Estimation under Orthogonality Conditions	530
14.3	Systems of Nonlinear Equations	532
14.4	Efficient Estimation	538
	14.4.1 General Efficiency Framework	538
	14.4.2 Efficiency of Maximum Likelihood Estimator	540
	14.4.3 Efficient Choice of Instruments under Conditional Mo	ment
	Restrictions	542
14.5	Classical Minimum Distance Estimation	545
14.6	Panel Data Applications	547
	14.6.1 Nonlinear Dynamic Models	547
	14.6.2 Minimum Distance Approach to the Unobserved Effe	cts
	Model	549
	14.6.3 Models with Time-Varying Coefficients on the Unobse	erved
	Effects	551
	Problems	555
	Appendix 14A	558
IV	NONLINEAR MODELS AND RELATED TOPICS	559
15	Binary Response Models	561
15.1	Introduction	561
15.2	Linear Probability Model for Binary Response	562
15.3	Index Models for Binary Response: Probit and Logit	565
15.4	Maximum Likelihood Estimation of Binary Response Index	
	Models	567
15.5	Testing in Binary Response Index Models	569
	15.5.1 Testing Multiple Exclusion Restrictions	570
	15.5.2 Testing Nonlinear Hypotheses about fi	571
	15.5.3 Tests against More General Alternatives	571

15.6	Report	ing the Results for Probit and Logit	5/3
15.7	Specifi	cation Issues in Binary Response Models	582
	15.7.1	Neglected Heterogeneity	582
	15.7.2	Continuous Endogenous Explanatory Variables	585
	15.7.3	Binary Endogenous Explanatory Variable	594
	15.7.4	Heteroskedasticity and Nonnormality in the Latent	
		Variable Model	599
	15.7.5	Estimation under Weaker Assumptions	604
15.8	Binary	Response Models for Panel Data	608
	15.8.1	Pooled Probit and Logit	609
	15.8.2	Unobserved Effects Probit Models under Strict Exogeneity	610
	15.8.3	Unobserved Effects Logit Models under Strict Exogeneity	619
	15.8.4	Dynamic Unobserved Effects Models	625
	15.8.5	Probit Models with Heterogeneity and Endogenous	
		Explanatory Variables	630
	15.8.6	Semiparametric Approaches	632
	Problei	ns	635
16	Multin	omial and Ordered Response Models	643
16.1	Introdu	action	643
16.2	Multin	omial Response Models	643
	16.2.1	Multinomial Logit	643
	16.2.2	Probabilistic Choice Models	646
	16.2.3	Endogenous Explanatory Variables	651
	16.2.4	Panel Data Methods	653
16.3	Ordere	d Response Models	655
	16.3.1	Ordered Logit and Ordered Probit	655
	16.3.2	Specification Issues in Ordered Models	658
	16.3.3	Endogenous Explanatory Variables	660
	16.3.4	Panel Data Methods	662
	Problei	ms	663
17	Corner	Solution Responses	667
17.1	Motiva	ation and Examples	667
17.2	Useful Expressions for Type I Tohit		671

Contents xv

17.3	Estima	tion and Inference with the Type I Tobit Model	676
17.4	Report	ing the Results	677
17.5	Specifi	cation Issues in Tobit Models	680
	17.5.1	Neglected Heterogeneity	680
	17.5.2	Endogenous Explanatory Models	681
	17.5.3	Heteroskedasticity and Nonnormality in the Latent	
		Variable Model	685
	17.5.4	Estimating Parameters with Weaker Assumptions	687
17.6	Two-P	art Models and Type II Tobit for Corner Solutions	690
	17.6.1	Truncated Normal Hurdle Model	692
	17.6.2	Lognormal Hurdle Model and Exponential Conditional	
		Mean	694
	17.6.3	Exponential Type II Tobit Model	697
17.7	Two-L	imit Tobit Model	703
17.8	Panel 1	Data Methods	705
	17.8.1	Pooled Methods	705
	17.8.2	Unobserved Effects Models under Strict Exogeneity	707
	17.8.3	Dynamic Unobserved Effects Tobit Models	713
	Proble	ms	715
18	Count,	Fractional, and Other Nonnegative Responses	723
18.1	Introdu	action	723
18.2	Poissor	n Regression	724
	18.2.1	Assumptions Used for Poisson Regression and Quantities	
		of Interest	724
	18.2.2	Consistency of the Poisson QMLE	727
	18.2.3	Asymptotic Normality of the Poisson QMLE	728
	18.2.4	Hypothesis Testing	732
	18.2.5	Specification Testing	734
18.3	Other	Count Data Regression Models	736
	18.3.1	Negative Binomial Regression Models	736
	18.3.2	Binomial Regression Models	739
18.4	Gamm	a (Exponential) Regression Model	740
18.5	Endog	eneity with an Exponential Regression Function	742
18.6	Fractio	onal Responses	748

xvi Contents

	18.6.1	Exogenous Explanatory Variables	748
	18.6.2	Endogenous Explanatory Variables	753
18.7	Panel I	Data Methods	755
	18.7.1	Pooled QMLE	756
	18.7.2	Specifying Models of Conditional Expectations with	
		Unobserved Effects	758
	18.7.3	Random Effects Methods	759
	18.7.4	Fixed Effects Poisson Estimation	762
	18.7.5	Relaxing the Strict Exogeneity Assumption	764
	18.7.6	Fractional Response Models for Panel Data	766
	Probler	ns	769
19	Censore	ed Data, Sample Selection, and Attrition	777
19.1	Introdu	action	777
19.2	Data C	Censoring	778
	19.2.1	Binary Censoring	780
	19.2.2	Interval Coding	783
	19.2.3	Censoring from Above and Below	785
19.3	Overvi	ew of Sample Selection	790
19.4	When (Can Sample Selection Be Ignored?	792
	19.4.1	Linear Models: Estimation by OLS and 2SLS	792
	19.4.2	Nonlinear Models	798
19.5	Selection	on on the Basis of the Response Variable: Truncated	
	Regress	sion	799
19.6	Inciden	ntal Truncation: A Probit Selection Equation	802
	19.6.1	Exogenous Explanatory Variables	802
	19.6.2	Endogenous Explanatory Variables	809
	19.6.3	Binary Response Model with Sample Selection	813
	19.6.4	An Exponential Response Function	814
19.7	Inciden	ntal Truncation: A Tobit Selection Equation	815
	19.7.1	Exogenous Explanatory Variables	815
	19.7.2	Endogenous Explanatory Variables	817
	19.7.3	Estimating Structural Tobit Equations with Sample	
		Selection	819
19.8	Inverse	Probability Weighting for Missing Data	821

Contents xvii

19.9	Sample	e Selection and Attrition in Linear Panel Data Models	827	
	19.9.1	Fixed and Random Effects Estimation with Unbalanced		
		Panels	828	
	19.9.2	Testing and Correcting for Sample Selection Bias	832	
	19.9.3	Attrition	837	
	Proble	ms	845	
20	Stratific	ed Sampling and Cluster Sampling	853	
20.1	Introdu	action	853	
20.2	Stratified Sampling			
	20.2.1	Standard Stratified Sampling and Variable Probability		
		Sampling	854	
	20.2.2	Weighted Estimators to Account for Stratification	856	
	20.2.3	Stratification Based on Exogenous Variables	861	
20.3	Cluster Sampling			
	20.3.1	Inference with a Large Number of Clusters and Small		
		Cluster Sizes	864	
	20.3.2	Cluster Samples with Unit-Specific Panel Data	876	
	20.3.3	Should We Apply Cluster-Robust Inference with Large		
		Group Sizes?	883	
	20.3.4	Inference When the Number of Clusters Is Small	884	
20.4	Complex Survey Sampling			
	Problei	ms	899	
21	Estima	ting Average Treatment Effects	903	
21.1	Introdu	action	903	
21.2	A Cou	A Counterfactual Setting and the Self-Selection Problem		
21.3	Methods Assuming Ignorability (or Unconfoundedness) of			
	Treatment			
	21.3.1	Identification	911	
	21.3.2	Regression Adjustment	915	
	21.3.3	Propensity Score Methods	920	
	21.3.4	Combining Regression Adjustment and Propensity Score		
		Weighting	930	
	21.3.5	Matching Methods	934	

21.4	Instrumental Variables Methods		
	21.4.1	Estimating the Average Treatment Effect Using IV	937
	21.4.2	Correction and Control Function Approaches	945
	21.4.3	Estimating the Local Average Treatment Effect by IV	951
21.5	Regression Discontinuity Designs		
	21.5.1	The Sharp Regression Discontinuity Design	954
	21.5.2	The Fuzzy Regression Discontinuity Design	957
	21.5.3	Unconfoundedness versus the Fuzzy Regression	
		Discontinuity	959
21.6	Further Issues		
	21.6.1	Special Considerations for Responses with Discreteness or	
		Limited Range	960
	21.6.2	Multivalued Treatments	961
	21.6.3	Multiple Treatments	964
	21.6.4	Panel Data	968
	Probler	ns	975
22	Duratio	on Analysis	983
22.1	Introdu	action	983
22.2	Hazard	Functions	984
	22.2.1	Hazard Functions without Covariates	984
	22.2.2	Hazard Functions Conditional on Time-Invariant	
		Covariates	988
	22.2.3	Hazard Functions Conditional on Time-Varying	
		Covariates	989
22.3	Analysis of Single-Spell Data with Time-Invariant Covariates		
	22.3.1	Flow Sampling	992
	22.3.2	Maximum Likelihood Estimation with Censored Flow	
		Data	993
	22.3.3	Stock Sampling	1000
	22.3.4	Unobserved Heterogeneity	1003
22.4	Analysis of Grouped Duration Data		
	22.4.1	Time-Invariant Covariates	1011
	22.4.2	Time-Varying Covariates	1015
	22.4.3	Unobserved Heterogeneity	1017

Contents xix

22.5	Further Issues		1018	
	22.5.1	Cox's Partial Likelihood Method for the Proportional		
		Hazard Model	1018	
	22.5.2	Multiple-Spell Data	1018	
	22.5.3	Competing Risks Models	1019	
	Problem	ns	1019	
	Referen	ces	1025	
	Index			