Portfolio Optimization and Performance Analysis

Jean-Luc Prigent

UNIVERSITAT LIECHTENSTEIN Bibliothek

Chapman &. Hall/CRC

Taylor Si Francis Group Boca Raton London New York Chapman & Hall/CRC is an imprint of the Taylor & Francis Group, an **informa** business

Contents

List of Tables X List of Figures				
1	Uti	lity tł	ieory	5
	1.1	Prefe	rences under uncertainty.	7
		1.1.1	Lotteries	. 7
		1.1.2	Axioms on preferences	8
	1.2	Expe	cted utility.	. 9
	1.3	Risk	aversion	11
		1.3.1	Arrow-Pratt measures of risk aversion	13
		1.3.2	Standard utility functions	
		1.3.3	Applications to portfolio allocation	17
	1.4	Stoch	nastic dominance	
	1.5	Alter	native expected utility theory	. 24
		1.5.1	Weighted utility theory	25
		1.5.2	Rank dependent expected utility theory	
		1.5.3	Non-additive expected utility	32
		1.5.4	Regret theory.	
	1.6	Furth	er reading.	
2	Ris	k mea	isures	37
	2.1	Cohe	erent and convex risk measures	
		2.1.1	Coherent risk measures	
		2.1.2	Convex risk measures	
		2.1.3	Representation of risk measures	
		2.1.4	Risk measures and utility	
		2.1.5	Dynamic risk measures	
	2.2	Stan	dard risk measures	
		2.2.1	Value-at-Risk	
		2.2.2	CVaR.	54
		2.2.3	Spectral measures of risk	59
	2.3	Furth	ner reading •	62

Π	S	tandar	d portfolio optimization	65
3	Stat	tic opti	mization	67
	3.1	Mean-v	variance analysis	68
		3.1.1	Diversification effect	68
		3.1.2	Optimal weights	71
		3.1.3	Additional constraints	. 78
		3.1.4	Estimation problems	82
	3.2	Alterna	ntive criteria	
		3.2.1	Expected utility maximization	85
		3.2.2	Risk measure minimization	93
	3.3	Further	r reading.	.100
4	Ind	exed fu	nds and benchmarking	103
	4.1	Indexed	d funds	.103
		4.1.1	Tracking error.	.104
		4.1.2	Simple index tracking methods	.105
		4.1.3	The threshold accepting algorithm	.106
		4.1.4	Cointegration tracking method	.112
	4.2	Benchr	nark portfolio optimization	.117
		4.2.1	Tracking-error definition	. 118
		4.2.2	Tracking-error minimization	119
	4.3	Further	r reading.	. 127
5	Por	tfolio p	performance	129
	5.1	Standa	rd performance measures.	.130
		5.1.1	The Capital Asset Pricing Model	.130
		5.1.2	The three standard performance measures	.132
		5.1.3	Other performance measures.	.140
		5.1.4	Beyond the CAPM	145
	5.2	Perform	nance decomposition	151
		5.2.1	The Fama decomposition	.151
		5.2.2	Other performance attributions	153
		5.2.3	The external attribution	153
		5.2.4	The internal attribution	.155
	5.3	Further	r Reading.	.163
II	[]	Dynam	nic portfolio optimization	165
6	Dyı	namic p	programming optimization	169
	6.1	Contro	l theory.	169
		6.1.1	Calculus of variations	169
		6.1.2	Pontryagin and Bellman principles	.175
		6.1.3	Stochastic optimal control	. 182
	6.2	Lifetim	e portfolio selection	.187

Х

	6.2.1	The optimization problem	.187
	6.2.2	The deterministic coefficients case	.188
	6.2.3	The general case.	.195
	6.2.4	Recursive utility in continuous-time	.203
.3	Furthe	er reading.	.205
)pt	imal p	ayoff profiles and long-term management	207
.1	Optin	nal payoffs as functions of a benchmark	.207
	7.1.1	Linear versus option-based strategy.	.207
.2	Application to long-term management		
	7.2.1	Assets dynamics and optimal portfolios	.214
	7.2.2	Exponential utility	.220
	7.2.3	Sensitivity analysis	223
	7.2.4	Distribution of the optimal portfolio return	225
.3	Furth	er reading.	.226
)pt	imizat	ion within specific markets	229
.1	Optin	nization in incomplete markets	.230
	8.1.1	General result based on martingale method	.230
	8.1.2	Dynamic programming and viscosity solutions	238
.2	Optin	nization with constraints	.242
	8.2.1	General result	242
	8.2.2	Basic examples	. 249
.3	Optin	nization with transaction costs.	.256
	8.3.1	The infinite-horizon case	
	8.3.2	The finite-horizon case	260
.4	Other	frameworks	
	8.4.1	Labor income.	. 263
_	8.4.2	Stochastic horizon	. 272
5	Furth	er reading.	. 276
S	Struct	cured portfolio management	279
Poi	rtfolio	insurance	281
1.1	The C	Option Based Portfolio Insurance	.282
	9.1.1	The standard OBPI method	. 284
	9.1.2	Extensions of the OBPI method	.286
12	The C	Constant Proportion Portfolio Insurance	.294
	9.2.1	The standard CPPI method	. 295
	9.2.2	CPPI extensions	303
13	Comp	parison between OBPI and CPPI	
	9.3.1	Comparison at maturity	
	9.3.2	The dynamic behavior of OBPI and CPPI	.310
14	Furth	er reading	318

10	Opt	imal dynamic portfolio with risk limits	319		
	10.1	Optimal insured portfolio: discrete-time case	.321		
		10.1.1 Optimal insured portfolio with a fixed number of assets	321		
		10.1.2 Optimal insured payoffs as functions of a benchmark .	326		
	10.2	Optimal Insured Portfolio: the dynamically complete case	333		
		10.2.1 Guarantee at maturity	.333		
		10.2.2 Risk exposure and utility function	.335		
		10.2.3 Optimal portfolio with controlled drawdowns	.337		
	10.3	Value-at-Risk and expected shortfall based management	340		
		10.3.1 Dynamic safety criteria	.340		
		10.3.2 Expected utility under VaR/CVaR constraints	347		
	10.4	Further reading.	.350		
11	Hedge funds				
	11.1	The hedge funds industry.	.351		
		11.1.1 Introduction	.351		
		11.1.2 Main strategies	.352		
	11.2	Hedge fund performance.	.354		
		11.2.1 Return distributions	.354		
		11.2.2 Sharpe ratio limits	.355		
		11.2.3 Alternative performance measures.	.362		
		11.2.4 Benchmarks for alternative investment.	.368		
		11.2.5 Measure of the performance persistence	369		
	11.3	Optimal allocation in hedge funds	.370		
	11.4	Further reading	.371		
A	Арр	endix A: Arch Models	373		
B	Арр	endix B: Stochastic Processes	381		
Re	References				
Sy	Symbol Description				
In	Index				