ESSENTIAL MATHEMATICS FOR ECONOMIC ANALYSIS

THIRD EDITION

KNUT SYDSÆTER

AND

PETER HAMMOND

An imprint of Pearson Education

Harlow, England • London • New York • Boston • San Francisco • Toronto • Sydney • Singapore • Hong Kong Tokyo • Seoul • Taipei • New Delhi • Cape Town • Madrid • Mexico City • Amsterdam • Munich • Paris • Milan

1

Preface

Formula

1 Introductory Topics I: Algebra 1.1 The Real Numbers 1.2 Integer Powers 1.3 Rules of Algebra 10 1.4 Fractions 15 1.5 Fractional Powers 19 1.6 Inequalities 24 1.7 Intervals and Absolute Values .29 Review Problems for Chapter 1 32 2 Introductory Topics II: Equations 35 2.1 How to Solve Simple Equations 35 2.2 Equations with Parameters 38 2.3 Quadratic Equations 41 2.4 Linear Equations in Two Unknowns 46 2.5 Nonlinear Equations 48 Review Problems for Chapter 2 49 3 Introductory Topics III: Miscellaneous 51 3.1 Summation Notation 51 3.2 Rules for Sums. Newton's Binomial .

1 *

ix

1

1

4

55

CONTENTS

3.3	Double Sums	59
3.4	A Few Aspects of Logic	61
3.5	Mathematical Proofs	67
3.6	Essentials of Set Theory	69
3.7	Mathematical Induction	74
	Review Problems for Chapter 3	76
4 Fu	unctions of One Variable	79
4.1	Introduction	79
4.2	Basic Definitions	80
4.3	Graphs of Functions	86
4.4	Linear Functions	89
4.5	Linear Models	96
4.6	Quadratic Functions	99
4.7	Polynomials	105
4.8	Power Functions	112
4.9	Exponential Functions	114
4.10	Logarithmic Functions	120
	Review Problems for Chapter 4	124
5 Pr	operties of Functions	127
5.1	Shifting Graphs	127
5.2	New Functions from Old	132
5.3	Inverse Functions	136
5.4	Graphs of Equations	143
5.5	Distance in the Plane. Circles	146

5.6	General Functions	150
	Review Problems for Chapter 5	153
6 D	ifferentiation	155
6.1	Slopes of Curves	1.55
6.2	The Derivative. Tangents	157
6.3	Increasing and Decreasing Functions	163
6.4	Rates of Change	165
6.5	A Dash of Limits	169
6.6	Simple Rules for Differentiation	174
6.7	Sums, Products, and Quotients	178
6.8	Chain Rule	184
6.9	Higher-Order Derivatives	189
6.10	Exponential Functions	194
6.11	Logarithmic Functions	197
	Review Problems for Chapter 6	203
7 D	erivatives in Use	205
7.1	Implicit Differentiation	205
7.2	Economic Examples	210
7.3	Differentiating the Inverse	213
7.4	Linear Approximations	216
7.5	Polynomial Approximations	221
7.6	Taylor's Formula	224
7.7	Why Economists Use Elasticities	228
7.8	Continuity	232
7.9	More on Limits	236
7.10	Intermediate Value Theorem.	
	Newton's Method	244
7.11	Infinite Sequences	248-
7.12	L'Hôpital's Rule	250
	Review Problems for Chapter 7	254
8 Si	ngle-Variable	
0	ptimization	257
8.1	Introduction	257
8.2	Simple Tests for Extreme Points	260
8,3	Economic Examples	264
8.4	The Extreme Value Theorem	268
8.5	Further Economic Examples	274
8.6	Local Extreme Points	279
8.7	Inflection Points	285
	Review Problems for Chapter 8	289

9 Integration 291 9.1 Indefinite Integrals 291 9.2 Area and Definite Integrals 297 303 9.3 Properties of Definite Integrals 9.4 Economic Applications 306 9.5 Integration by Parts 313 9.6 Integration by Substitution 316 9.7 Infinite Intervals of Integration 319 9.8 A Glimpse at Differential Equations 326 9.9 Separable and Linear Differential Equations 331 Review Problems for Chapter 9 336 10 Interest Rates and Present Values 339 10.1 Interest Periods and Effective Rates 339 10.2 Continuous Compounding 343 10.3 Present Value 345 10.4 Geometric Series 347 10.5 Total Present Value 352 10.6 Mortgage Repayments ' 357

10.7 Internal Rate of Return		362
10.8 A Glimpse at Difference Equations	5	363
Review Problems for Chapter 10		367

369

403

11 Functions of Many Variables

11.1 Functions of Two Variables	369
11.2 Partial Derivatives with Two Variables	373
11.3 Geometric Representation	379
11.4 Surfaces and Distance	386
11.5 Functions of More Variables	389
11.6 Partial Derivatives with More Variables	392
11.7 Economic Applications	39Ģ
11.8 Partial Elasticities	398
Review Problems for Chapter 11	400

12 Tools for Comparative Statics

12.1 A Simple Chain Rule	403
12.2 Chain Rules for Many Variables	408
12.3 Implicit Differentiation along	
a Level Curve	412
12.4 More General Cases	416

12.5	Elasticity of Substitution	420
12.6	Homogeneous Functions of	
	Two Variables	423
12.7	General Homogeneous and Homothetic	
	Functions	427
12.8	Linear Approximations	432
12.9	Differentials	436
12.10	Systems of Equations	441
12.11	Differentiating Systems of Equations ,	444
	Review Problems for Chapter 12	450
13	Multivariable	
(Optimization	453
13.1	Two Variables: Necessary Conditions	453
13.2	Two Variables: Sufficient Conditions	458
13.3	Local Extreme Points	462
13.4	Linear Models with Quadratic	
	Objectives	467
13.5	The Extreme Value Theorem	474
13.6	Three or More Variables	479
13.7	Comparative Statics and	
	the Envelope Theorem	482
	Review Problems for Chapter 13	486
14	Constrained Optimization	489
14.1	The Lagrange Multiplier Method	489
14.2	Interpreting the Lagrange Multiplier	496
14.3	Several Solution Candidates	499
14.4	Why the Lagrange Multiplier Method	
	Works	501
14.5	Sufficient Conditions	505
14.6	More Variables and More Constraints	508
14.7	Comparative Statics	514
14.8	3 Nonlinear Programming: A Simple Ca	se 517
14.9) More on Nonlinear Programming	, 523
	Review Problems for Chapter 14	530
15	Matrix and Vector	
-	Algebra	533
15.	1 Systems of Linear Equations	533
15.1	2 Matrices and Matrix Operations	537
15.	3 Matrix Multiplication	540

15.4 Rules for Matrix Multiplication

15.5 The Transpose

ľ ١ A Tł A Index 3) 3

1 1 1

545 551

15.9 Lines and Planes Review Problems for Chapter 15 571 16 Determinants and **Inverse Matrices** 573 16.1 Determinants of Order 2 573 16.2 Determinants of Order 3 576 16.3 Determinants of Order n 580 16.4 Basic Rules for Determinants 583 16.5 Expansion by Cofactors 588 16.6 The Inverse of a Matrix 591 16.7 A General Formula for the Inverse 597 16.8 Cramer's Rule 600 16.9 The Leontief Model 603 Review Problems for Chapter 16 607

17 Linear Programming

7 Linear Programming	609
7.1 A Graphical Approach	609
7.2 Introduction to Duality Theory	615
7.3 The Duality Theorem	619
7.4 A General Economic Interpretation	622
7.5 Complementary Slackness	624
Review Problems for Chapter 17	629
ppendix: Geometry	631
he Greek Alphabet	633
nswers to the Problems	

15.6 Gaussian Elimination 554 15.7 Vectors 559 15.8 Geometric Interpretation of Vectors 562

ix

567

715