

Introduction to Econometrics

Third Edition

G.S. Maddala

Formerly of Ohio State University

JOHN WILEY & SONS, LTD Chichester • New York • Weinheim • Brisbane • Toronto • Singapore

· S. A. Margaret Block - S. S. S. S.

The second s

Contents

Pr Pr	Foreword Preface to the Second Edition Preface to the Third Edition Obituary		xvii xix xxiii xxv
PA	RT I	INTRODUCTION AND THE LINEAR REGRESSION MODEL	1
1	Wha	t is Econometrics?	3
	What	t is in this Chapter?	3
	1.1	What is Econometrics?	3
	1.2	Economic and Econometric Models	4
	1.3	The Aims and Methodology of Econometrics	6
	1.4	What Constitutes a Test of an Economic Theory?	9
	Sum	nary and an Outline of the Book	9
2	Stati	stical Background and Matrix Algebra	11
	What	t is in this Chapter?	11
	2.1	Introduction	12
	2.2	Probability	12
		Addition Rules of Probability	13
		Conditional Probability and the Multiplication Rule	14
		Bayes' Theorem	15
		Summation and Product Operations	15
	2.3	Random Variables and Probability Distributions	17
		Joint, Marginal, and Conditional Distributions	18
		Illustrative Example	18
	2.4	The Normal Probability Distribution and Related Distributions	19
		The Normal Distribution	19
		Related Distributions	20

	2.5	Classical Statistical Inference Point Estimation	21 22
	2.6	Properties of Estimators	22
	2.0	Unbiasedness	23
		Efficiency	24
		Consistency	24
		Other Asymptotic Properties	25
	2.7	Sampling Distributions for Samples from a Normal Population	26
	2.8	Interval Estimation	27
	2.9	Testing of Hypotheses	28
	2.10	Relationship Between Confidence Interval Procedures and Tests	
		of Hypotheses	32
	2.11	Combining Independent Tests	33
	Sumn		33
	Exerc	•	34
	Apper	idix to Chapter 2	41
		Matrix Algebra	41
		Exercises on Matrix Algebra	56
3	Simp	e Regression	59
	-	is in this Chapter?	59
	3.1	Introduction	59
	3.2	Specification of the Relationships	61
	3.3	The Method of Moments	65
		Illustrative Example	66
	3.4	The Method of Least Squares	68
		Reverse Regression	71
		Illustrative Example	72
	3.5	Statistical Inference in the Linear Regression Model	75
		Illustrative Example	77
		Confidence Intervals for α , β , and σ^2	78
		Testing of Hypotheses	79
		Example of Comparing Test Scores from the GRE and	
		GMAT Tests	81
		Regression with No Constant Term	82
	3.6	Analysis of Variance for the Simple Regression Model	83
	3.7	Prediction with the Simple Regression Model	84
		Prediction of Expected Values	86
		Illustrative Example	87
	3.8	Outliers	88
		Some Illustrative Examples	89
	3.9	Alternative Functional Forms for Regression Equations	94
		Illustrative Example	97
		Inverse Prediction in the Least Squares Regression Model	99 101
	*3.11	Stochastic Regressors	101

vi

CONTENTS	5
----------	---

4

*3.12	The Regression Fallacy	102
	The Bivariate Normal Distribution	102
	Galton's Result and the Regression Fallacy	104
	A Note on the Term: "Regression"	104
Summ		105
Exerci		106
Apper	ndix to Chapter 3	112
Multi	ple Regression	127
What	is in this Chapter?	127
4.1	Introduction	127
4.2	A Model with Two Explanatory Variables	129
	The Least Squares Method	130
	Illustrative Example	132
4.3	Statistical Inference in the Multiple Regression Model	134
	Illustrative Example	135
	Formulas for the General Case of k Explanatory Variables	139
	Some Illustrative Examples	140
4.4	Interpretation of the Regression Coefficients	143
	Illustrative Example	145
4.5	Partial Correlations and Multiple Correlation	146
4.6	Relationships Among Simple, Partial, and Multiple Correlation	
	Coefficients	147
	Two Illustrative Examples	148
4.7	Prediction in the Multiple Regression Model	153
	Illustrative Example	153
4.8	Analysis of Variance and Tests of Hypotheses	154
	Nested and Nonnested Hypotheses	156
	Tests for Linear Functions of Parameters	157
	Illustrative Example	158
4.9	Omission of Relevant Variables and Inclusion of Irrelevant	
	Variables	159
	Omission of Relevant Variables	160
	Example 1: Demand for Food in the United States	161
	Example 2: Production Functions and Management Bias	162
	Inclusion of Irrelevant Variables	163
4.10	Degrees of Freedom and \overline{R}^2	164
4.11	Tests for Stability	168
	The Analysis of Variance Test	168
	Example 1: Stability of the Demand for Food Function	169
	Example 2: Stability of Production Functions	170
	Predictive Tests for Stability	173
	Illustrative Example	173
*4.12	The LR, W, and LM Tests	176
	Illustrative Example	176

	Summ	ΊαΓ Υ	177
	Exerc	•	179
	Appe	ndix to Chapter 4	185
	•••	The Multiple Regression Model in Matrix Notation	185
	Data	Sets	192
PA	RT II	VIOLATION OF THE ASSUMPTIONS OF THE BASIC MODEL	1 97
5	Hete	oskedasticity	199
Ũ		is in this Chapter?	199
	5.1	Introduction	199
		Illustrative Example	200
	5.2	Detection of Heteroskedasticity	202
		Illustrative Example	202
		Some Other Tests	203
		Illustrative Example	205
		An Intuitive Justification for the Breusch-Pagan Test	206
	5.3	Consequences of Heteroskedasticity	207
		Estimation of the Variance of the OLS Estimator Under	
		Heteroskedasticity	209
	5.4	Solutions to the Heteroskedasticity Problem	209
		Illustrative Example	211
	5.5	Heteroskedasticity and the Use of Deflators	212
		Illustrative Example: The Density Gradient Model	215
	*5.6	Testing the Linear Versus Log-Linear Functional Form	217
		The Box–Cox Test	217
		The BM Test	219
		The PE Test	219
	Sumr	nary	220
	Exerc	vises	221
	Appe	ndix to Chapter 5	224
		Generalized Least Squares	224
6	Auto	correlation	227
Č		is in this Chapter?	227
	6.1	Introduction	227
		Durbin–Watson Test	228
		Illustrative Example	229
	6.3	Estimation in Levels Versus First Differences	230
		Some Illustrative Examples	232
	6.4	Estimation Procedures with Autocorrelated Errors	234
		Iterative Procedures	236
		Grid-Search Procedures	237
		Illustrative Example	238
	6.5	Effect of AR(1) Errors on OLS Estimates	238

viii

	6.6	Some Further Comments on the DW Test	242
		The von Neumann Ratio	243
		The Berenblut–Webb Test	243
	6.7	Tests for Serial Correlation in Models with Lagged	
		Dependent Variables	245
		Durbin's h-Test	246
		Durbin's Alternative Test	246
		Illustrative Example	247
	6.8	A General Test for Higher-Order Serial Correlation: The LM Test	248
	6.9	Strategies When the DW Test Statistic is Significant	249
		Errors Not AR(1)	249
		Autocorrelation Caused by Omitted Variables	250
		Serial Correlation Due to Misspecified Dynamics	252
		The Wald Test	253
		Illustrative Example	254
	*6.10	Trends and Random Walks	255 257
		Spurious Trends	237
		Differencing and Long-Run Effects: The Concept of	258
	*< 11	Cointegration	258 260
		ARCH Models and Serial Correlation Some Comments on the DW Test and Durbin's <i>h</i> -Test and <i>t</i> -Test	260
	6.12 Summ		262
	Sumn Exerc		262
	EACIC	1505	201
7	Multi	icollinearity	267
	What	is in this Chapter?	267
	7.1	Introduction	268
	7.2	Some Illustrative Examples	268
	7.3	Some Measures of Multicollinearity	272
	7.4	Problems with Measuring Multicollinearity	274
	7.5	Solutions to the Multicollinearity Problem: Ridge Regression	278
	7.6	Principal Component Regression	281
	7.7	Dropping Variables	286
	7.8	Miscellaneous Other Solutions	289
		Using Ratios or First Differences	289
		Using Extraneous Estimates	289
	~	Getting More Data	291
	Sumr		291 291
	Exerc		291
	Appe	ndix to Chapter 7	293 293
		Linearly Dependent Explanatory Variables	295
8	Dum	my Variables and Truncated Variables	301
		is in this Chapter?	301
	8.1	Introduction	301

	8.2	Dummy Variables for Changes in the Intercept Term	302
		Illustrative Example	305
		Two More Illustrative Examples	306
	8.3	Dummy Variables for Changes in Slope Coefficients	307
	8.4	Dummy Variables for Cross-Equation Constraints	310
	8.5	Dummy Variables for Testing Stability of Regression	
		Coefficients	313
	8.6	Dummy Variables Under Heteroskedasticity and	
		Autocorrelation	316
	8.7	Dummy Dependent Variables	317
	8.8	The Linear Probability Model and the Linear Discriminant	
		Function	318
		The Linear Probability Model	318
		The Linear Discriminant Function	320
	8.9	The Probit and Logit Models	322
		Illustrative Example	324
		The Problem of Disproportionate Sampling	325
		Prediction of Effects of Changes in the Explanatory Variables	327
		Measuring Goodness of Fit	327
	8.10	Illustrative Example	329
	8.11	Truncated Variables: The Tobit Model	333
		Some Examples	333
		Method of Estimation	334
		Limitations of the Tobit Model	335
		The Truncated Regression Model	336
	Sumn	nary	338
	Exerc	ises	339
9	Simu	Itaneous Equations Models	343
		is in this Chapter?	343
	9.1	Introduction	343
	9.2	Endogenous and Exogenous Variables	345
	9.3	The Identification Problem: Identification through Reduced Form	346
		Illustrative Example	348
	9.4	Necessary and Sufficient Conditions for Identification	351
		Illustrative Example	353
	9.5	Methods of Estimation: The Instrumental Variable Method	354
		Measuring R^2	356
		Illustrative Example ³	357
	9.6	Methods of Estimation: The Two-Stage Least Squares Method	360
		Computing Standard Errors	361
		Illustrative Example	363
	9.7	The Question of Normalization	366
	*9.8	The Limited-Information Maximum Likelihood Method	367
		Illustrative Example	368

x

	*9.9	On the Use of OLS in the Estimation of Simultaneous	
		Equations Models	369
		Working's Concept of Identification	371
		Recursive Systems	373
		Estimation of Cobb-Douglas Production Functions	373
	*9.10	Exogeneity and Causality	375
		Weak Exogeneity	378
		Superexogeneity	378
		Strong Exogeneity	378
		Granger Causality	379
		Granger Causality and Exogeneity	380
		Tests for Exogeneity	380
	9.11	Some Problems with Instrumental Variable Methods	381
	Summ	•	382
	Exerc	ises	383
	Apper	ndix to Chapter 9	386
10	Nonli	near Regressions, Models of Expectations, and Nonnormality	391
	What	is in this Chapter?	391
	10.1	Introduction	392
	10.2	The Newton-Raphson Method	392
	10.3	Nonlinear Least Squares	393
		The Gauss-Newton Method	393
		Models of Expectations	394
	10.5	Naive Models of Expectations	395
	10.6	The Adaptive Expectations Model	397
	10.7	Estimation with the Adaptive Expectations Model	399
		Estimation in the Autoregressive Form	399
		Estimation in the Distributed Lag Form	400
	10.8	Two Illustrative Examples	401
	10.9	Expectational Variables and Adjustment Lags	405
	10.10	Partial Adjustment with Adaptive Expectations	409
	10.11	Alternative Distributed Lag Models: Polynomial Lags	411
		Finite Lags: The Polynomial Lag	412
		Illustrative Example	415
		Choosing the Degree of the Polynomial	416
		Rational Lags	417
		Rational Expectations	419
		Tests for Rationality	422
	10.15	Estimation of a Demand and Supply Model Under Rational	424
		Expectations	424
		Case 1	424 425
		Case 2 Illustrativo Example	423
	10.16	Illustrative Example The Social Correlation Broblem in Pational Expectations Models	420
	10.16	The Serial Correlation Problem in Rational Expectations Models	431

	10.17	Nonnormality of Errors	431
		Tests for Normality	432
	10.18	Data Transformations	433
	Summ	ary	433
	Exerc	ises	435
11	Error	s in Variables	437
		is in this Chapter?	437
		Introduction	437
	11.2	The Classical Solution for a Single-Equation Model with One	
		Explanatory Variable	438
	11.3	The Single-Equation Model with Two Explanatory Variables	441
		Two Explanatory Variables: One Measured with Error	441
		Illustrative Example	444
		Two Explanatory Variables: Both Measured with Error	446
	11.4	Reverse Regression	449
	11.5	Instrumental Variable Methods	451
	11.6	Proxy Variables	454
		Coefficient of the Proxy Variable	456
	11.7		457
		The Case of Multiple Equations	458
		Correlated Errors	459
	Sumn		459
	Exerc	ises	461
PA	RT III	SPECIAL TOPICS	463
12	Diagr	ostic Checking, Model Selection, and Specification Testing	465
	What	is in this Chapter?	465
	12.1	Introduction	465
	12.2	Diagnostic Tests Based on Least Squares Residuals	466
		Tests for Omitted Variables	467
		Tests for ARCH Effects	468
	12.3	Problems with Least Squares Residuals	469
	12.4	Some Other Types of Residuals	470
		Predicted Residuals and Studentized Residuals	470
		Dummy Variable Method for Studentized Residuals	471
		BLUS Residuals	472
		Recursive Residuals	472
		Illustrative Example	474
	12.5	DFFITS and Bounded Influence Estimation	476
	10 -	Illustrative Example	478
	12.6	Model Selection	479
		Hypothesis-Testing Search	480
		Interpretive Search	481

xii

and the second second

		Simplification Search	481
		Proxy Variable Search	481
		Data Selection Search	482
		Post-Data Model Construction	482
		Hendry's Approach to Model Selection	483
	12.7	Selection of Regressors	484
		Theil's \overline{R}^2 Criterion	486
		Criteria Based on Minimizing the Mean-Squared	
		Error of Prediction	486
		Akaike's Information Criterion	488
	12.8	Implied F-Ratios for the Various Criteria	488
		Bayes' Theorem and Posterior Odds for Model Selection	491
	12.9	Cross-Validation	492
	12.10	Hausman's Specification Error Test	494
		An Application: Testing for Errors in Variables or Exogeneity	496
		Some Illustrative Examples	497
		An Omitted Variable Interpretation of the Hausman Test	498
		The Plosser-Schwert-White Differencing Test	501
	12.12	Tests for Nonnested Hypotheses	502
		The Davidson and MacKinnon Test	502
		The Encompassing Test	505 506
		A Basic Problem in Testing Nonnested Hypotheses	300
		Hypothesis Testing Versus Model Selection as a Research	506
	c	Strategy	506
	Sumn		508
	Exerc		510
	Appe	ndix to Chapter 12	510
13	Intro	luction to Time-Series Analysis	513
		is in this Chapter?	513
		Introduction	513
	13.2	Two Methods of Time-Series Analysis: Frequency Domain and	
		Time Domain	514
	13.3	Stationary and Nonstationary Time Series	514
		Strict Stationarity	515
		Weak Stationarity	516
		Properties of Autocorrelation Function	517
		Nonstationarity	517
	13.4	Some Useful Models for Time Series	517
		Purely Random Process	517 518
		Random Walk	518
		Moving Average Process	520
		Autoregressive Process	520
		Autoregressive Moving Average Process	522
		Autoregressive Integrated Moving Average Process	524

xiii

the state of the second states.

150.00

	13.5	Estimation of AR, MA, and ARMA Models	524
		Estimation of MA Models	524
		Estimation of ARMA Models	525
		Residuals from the ARMA Models	526
		Testing Goodness of Fit	527
	13.6	The Box-Jenkins Approach	529
		Forecasting from Box–Jenkins Models	531
		Illustrative Example	532
		Trend Elimination: The Traditional Method	534
		A Summary Assessment	535
		Seasonality in the Box–Jenkins Modeling	535
	13.7	R^2 Measures in Time-Series Models	536
	Summ	ary	540
	Exerci	ses	540
	Data S	Sets	541
14	Vector	r Autoregressions, Unit Roots, and Cointegration	543
	What	is in this Chapter?	543
		Introduction	543
	14.2	Vector Autoregressions	544
	14.3	Problems with VAR Models in Practice	546
	14.4	Unit Roots	547
	14.5	Unit Root Tests	548
		Dickey–Fuller Test	548
		The Serial Correlation Problem	549
		The Low Power of Unit Root Tests	550
		The DF-GLS Test	550
		What are the Null and Alternative Hypotheses in Unit Root Tests?	550
		Tests with Stationarity as Null	552
		Confirmatory Analysis	553
		Panel Data Unit Root Tests	554
		Structural Change and Unit Roots	555
	14.6	Cointegration	556
	14.7	The Cointegrating Regression	557
	14.8	Vector Autoregressions and Cointegration	560
	14.9	Cointegration and Error Correction Models	564
	14.10	Tests for Cointegration	565
	14.11	Cointegration and Testing of the REH and MEH	566
	14.12	A Summary Assessment of Cointegration	568
	Summ	ary	569
	Exerc	ses	570

xiv

CON	TENTS
-----	-------

573
573
573
574
575
578
578
579
579
580
581
583

16 Large-Sample Theory	585
What is in this Chapter?	585
16.1 The Maximum Likelihood Method	585
16.2 Methods of Solving the Likelihood Equations	586
16.3 The Cramer-Rao Lower Bound	588
16.4 Large-Sample Tests Based on ML	588
16.5 GIVE and GMM	589
Summary	591
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

17	Small	-Sample Inference: Resampling Methods	593
		is in this Chapter?	593
	17.1	Introduction	593
	17.2	Monte Carlo Methods	594
		More Efficient Monte Carlo Methods	595
		Response Surfaces	595
	17.3	Resampling Methods: Jackknife and Bootstrap	595
		Some Illustrative Examples	597
		Other Issues Relating to Bootstrap	598
	17.4	Bootstrap Confidence Intervals	599
	17.5	Hypothesis Testing with the Bootstrap	599
	17.6	Bootstrapping Residuals Versus Bootstrapping the Data	600
	17.7	NonIID Errors and Nonstationary Models	601
		Heteroskedasticity and Autocorrelation	601
		Unit Root Tests Based on the Bootstrap	601
		Cointegration Tests	601
	17.8	Miscellaneous Other Applications	602

xv

Summary	602
Appendices	605
Appendix A: Data Sets	605
Appendix B: Data Sets on the Web	613
Appendix C: Computer Programs	615
Index	617

#### Index

xvi